Linear Algebra I

In this lecture we introduce the basic concepts about vector spaces, linear maps and matrix transformations. It is a very important basic course because In many occasions one approaches a problem by linearization, because linear systems are easier to solve than non-linear ones. The syllabus can be found here.

Content: (Organized by chapters in the lecture notes)

  1. Linear systems 
  2. determinants
  3. Euclidean vector spaces 
  4. General vector spaces
  5. Eigenvalues and eigenvectors
  6. Inner product space
  7. Diagonalization and quadratic forms
  8. Linear transforamations

 

Literature: 

 

Book Name: Elementary Linear Algebra (Application Version), 

Howard Anton & Chris Rorres, ISBN 978-1-118-43441-3, Wiley, 2014, Edition 11

 

Final Review problems for the final 

When: Wednesday 24th of January 2024, 08:00-10:00 in then morning. 

Please arrive half an hour before. 

Where: Teaching center, Room 203 

 

TAs Li Chenxuan, Yu Sun, Zhe Zhelin

 

 

Lecture notes

Chapter1 Chapter2 Chapter3 Chapter4 

Chapter5 Diagonalizing Chapter6 Chapter7 Chapter8

 

Problem sheets 

Sheet1Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 Sheet10.

Sheet11 Sheet12 Sheet13 Sheet14

 

Midterm review_problems solutions; midterm-solutions.    

 

Additional material

Proof of Theorem 25 (uniqueness of reduced row echelon form of a matrix)

Applications for Chapter 2 (Cramer's rule and sign of a permutation)

Application-Ch5-Linear-Differential-Equations

Application-Ch5-Spectral-Norm

Proof of Thm235 in Ch5

Applications-Ch7 Conics and local extrema

 

 

Prof. Daniel Skodllerack

 

Shanghaitech University

Institute for Mathematical Sciences,  Room S413

 

Office hours:

Mondays  19:00-20:00 and Sundays 19:00-20:00

Email address:  dskodlerack at shanghaitech.edu.cn

 

 

Print | Sitemap
© Daniel Skodlerack 上海科技大学 数学科学研究所 上海市浦东新区华夏中路393号上海科技大学创艺学院南楼(D区)室S413