LINEAR ALGEBRA 1
 PROBLEM SHEET 3

PROF. DANIEL SKODLERACK

Problem 1 ($5+5$ points, unique solutions).
(i) Read the proof of Theorem 46 and complete the proof.
(ii) Let $A \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^{m \times 1}$ be given. Prove that the following assertions are equivalent.
(a) A is invertible.
(b) The equation $A x=b, x \in \mathbb{R}^{m \times 1}$ has exactly one solution.

Problem 2 ($15+5$ points, invertibility for matrices). Which of the following matrices is invertible and if so compute the inverse.
(i)

$$
\left(\begin{array}{llll}
1 & 2 & 1 & 3 \\
1 & 0 & 1 & 2 \\
1 & 1 & 1 & 1 \\
0 & 3 & 0 & 3
\end{array}\right)
$$

(ii)

$$
\left(\begin{array}{llll}
1 & 2 & 1 & 3 \\
1 & 0 & 1 & 2 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 2
\end{array}\right)
$$

For the non-invertible matrix, solve the homogenous linear system. Which are the pivotal variables and which are the free variables.

Problem 3 (10 points, invertible matrices). Let A, B, C, D be $m \times m$ matrices such that the product $A B C D$ is invertible. Prove that A, B, C, D are invertible matrices..

Problem 4 (10 points, matrix with huge diagonal entries). Decide wether or not the following matrix is invertible.

$$
\left(\begin{array}{cccc}
1000 & 2 & 1 & 3 \\
1 & 800 & 1 & 2 \\
1 & 1 & 700 & 1 \\
1 & 1 & 0 & 5
\end{array}\right)
$$

Problem 5 (20* points, uniqueness of reduced echelon form). Prove Theorem 25.

[^0]
[^0]: Date: Please hand in before the lecture by 25th of October 2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. ${ }^{*}$ questions give extra points.

