LINEAR ALGEBRA 1 PROBLEM SHEET 3

PROF. DANIEL SKODLERACK

Problem 1 (5+5 points, unique solutions). (i) Read the proof of Theorem 46 and complete the proof.

- (ii) Let $A \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^{m \times 1}$ be given. Prove that the following assertions are equivalent. (a) A is invertible.
 - (b) The equation $Ax = b, x \in \mathbb{R}^{m \times 1}$ has exactly one solution.

Problem 2 (15+5 points, invertibility for matrices). Which of the following matrices is invertible and if so compute the inverse.

(i)

(ii)

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \\ 0 & 3 & 0 & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}$$

For the non-invertible matrix, solve the homogenous linear system. Which are the pivotal variables and which are the free variables.

Problem 3 (10 points, invertible matrices). Let A, B, C, D be $m \times m$ matrices such that the product ABCD is invertible. Prove that A, B, C, D are invertible matrices.

Problem 4 (10 points, matrix with huge diagonal entries). Decide wether or not the following matrix is invertible.

/100	$0 \ 2$	1	3
1	800	1	2
1	1	700	1
$\begin{pmatrix} 1 \end{pmatrix}$	1	0	5/

Problem 5 (20^* points, uniqueness of reduced echelon form). Prove Theorem 25.

Date: Please hand in before the lecture by **25th of October 2023**. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. * questions give extra points.