LINEAR ALGEBRA 1
 PROBLEM SHEET 14

PROF. DANIEL SKODLERACK

Problem $1\left(10+10+10\right.$, matrix of an linear map w.r.t a pair of bases). Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map such that $f(2,1)=(0,1,1)$ and $f(-1,2)=(2,3,2)$.
(i) Compute $f(1,1)$.
(ii) Compute $\mathrm{A} \in \mathbb{R}^{3 \times 2}$ such that $f=\mathrm{T}_{\mathrm{A}}$ (after identifying \mathbb{R}^{2} with $\mathbb{R}^{2 \times 1}$ and \mathbb{R}^{3} with $\mathbb{R}^{3 \times 1}$).
(iii) Compute $[f]_{\mathrm{C} \rightarrow \mathrm{B}}$ for the bases

$$
\mathrm{B}:=\{(1,1,1),(1,-1,1),(-1,0,1)\}, \mathrm{C}:=\{(2,1),(-1,2)\}
$$

Problem $2(10+10+10$, range).
(i) Let $f: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Prove that range (f) is a subspace of W .
(ii) Given $\mathrm{A} \in \mathbb{R}^{m \times n}$. Prove range $\left(\mathrm{T}_{\mathrm{A}}\right)=\operatorname{col}(\mathrm{A})$.
(iii) Given $f: \mathrm{C}^{1}(\mathbb{R}) \rightarrow \mathrm{C}(\mathbb{R}), f(\varphi):=\varphi^{\prime}+\varphi$. Compute its kernel and its range.

Problem $3(10+10+10$, hom space). (i) Given vector spaces V and W prove that the set of linear transformation from V to W , denoted by $\operatorname{Hom}(\mathrm{V}, \mathrm{W})$, is a vector space with respect to

$$
(f+g)(v):=f(v)+g(v),(\lambda f)(v):=\lambda f(v), \lambda \in \mathbb{R}, v \in \mathrm{~V}
$$

(ii) Consider the map

$$
\Phi: \mathbb{R}^{m \times n} \rightarrow \operatorname{Hom}\left(\mathbb{R}^{n \times 1}, \mathbb{R}^{m \times 1}\right), \Phi(\mathrm{A}):=\mathrm{T}_{\mathrm{A}}
$$

Prove that Φ is an isomorphism.
(iii) Find a basis of $\operatorname{Hom}\left(\mathbb{R}^{n \times 1}, \mathbb{R}^{m \times 1}\right)$.

Problem 4 (30, linear extension). Determine if there is a linear map satisfying the given conditions.
(i) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f(1,1,0)=(1,0,0), f(1,2,1)=(1,0,1), f(3,4,1)=(3,0,1)$,
(ii) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f(1,1,2)=(1,0), f(1,1,1)=(0,1), f(6,6,9)=(6,7)$,
(iii) $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}, f(1,1,0,1)=(1,1,0), f(1,2,1,1)=(1,0,1), f(1,3,4,1)=(3,0,1)$,

Problem 5 (55, left inverse, right inverse). Detect which map is an epimorphism, monomorphism or an isomorphism. If so find a left inverse, a right inverse and an inverse, respectively.
(i) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}, x_{3}\right):=\left(x_{1}+x_{2}, x_{2}+x_{3}\right)$
(ii) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f\left(x_{1}, x_{2}, x_{3}\right):=\left(x_{1}+2 x_{2}+x_{3}, x_{1}-x_{2}+x_{3}, 2 x_{1}+x_{2}+x_{3}\right)$
(iii) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f\left(x_{1}, x_{2}, x_{3}\right):=\left(x_{1}+x_{2}+5 x_{3}, x_{1}-x_{2}+x_{3}, x_{1}+x_{2}+5 x_{3}\right)$
(iv) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}, f\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\left(x_{1}+x_{2}+x_{3}, x_{1}-x_{2}+x_{3}, x_{2}+x_{3}, x_{1}+x_{3}\right)$.

[^0]
[^0]: Date: Please hand in online to your TA by 15th of January 2023 11:59 am. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. The intermediate steps for computations need to be provided.

