LINEAR ALGEBRA 1
 PROBLEM SHEET 9

PROF. DANIEL SKODLERACK

Problem 1 (10 points, similar matrices). Consider the matrix A

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Prove that A is similar to its transpose.
Problem $2\left(10^{*}+10\right.$ points, Markov chain). Let R_{1} and R_{2} be two wildlife reserves for tigers. In one year a tiger in R_{1} migrates to R_{2} with probability 0.3 and stays within R_{1} with probability 0.7 . A tiger in R_{2} migrates to R_{1} with probability 0.2 and stays within R_{2} with probability 0.8 . At time 0 both reserves have the same number of tigers. $x(0)=(0.5,0.5)^{T}$.
(i) Let $x(t)=\left(x_{1}(t), x_{2}(t)\right)^{T}$ be the distribution of tigers after t years. Prove that the sequence of state vectors $(x(t))_{t \in \mathbb{N}}$ converges to a vector in \mathbb{R}^{2}. Hint: Show that the powers of the transition matrix of the problem converge in finding its eigenvalues. .
(ii) Compute the limit distribution.

Problem 3 (20+10 points, eigenvalues and eigenvectors). (i) Find the eigenvalues and the eigenvectors of the matrix

$$
\left(\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right)
$$

(ii) Consider the sequence

$$
a_{-1}:=a_{0}:=1, a_{1}:=3, a_{n+1}:=2 a_{n}+a_{n-1}, n \geqslant 1 .
$$

Find an explicit formula for a_{n} and prove your formula. Hint: Consider the matrix

$$
\left(\begin{array}{cc}
a_{n+1} & a_{n} \\
a_{n} & a_{n-1}
\end{array}\right)
$$

Problem $4\left(10+10\right.$, direct sum of eigenspaces). Let V be a vector space and $\mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots, \mathrm{~W}_{r}$ be subspaces. We call the sum

$$
\mathrm{W}_{1}+\mathrm{W}_{2}+\mathrm{W}_{3}+\ldots+\mathrm{W}_{r}
$$

a direct sum if the zero vector cannot be obtained as a sum $w_{1}+w_{2}+\ldots+w_{r}$ with $w_{i} \in \mathrm{~W}_{i}$ with some summand being non-zero. Let A be a square matrix of size n and $\lambda_{1}, \ldots, \lambda_{r}$ be distinct real eigenvalues of A .
(i) Prove that

$$
\operatorname{Eig}\left(\mathrm{A}, \lambda_{1}\right)+\operatorname{Eig}\left(\mathrm{A}, \lambda_{1}\right)+\ldots+\operatorname{Eig}\left(\mathrm{A}, \lambda_{r}\right)
$$

is direct.
(ii) We call $\operatorname{Eig}^{i}(\mathrm{~A}, \lambda):=\operatorname{null}\left(\left(\mathrm{A}-\lambda \mathrm{I}_{n}\right)^{i}\right)$ the i th higher eigenspace of A corresponding to λ. Given any tuple of positive integers $\nu_{1}, \nu_{2}, \ldots, \nu_{r}$, prove that

$$
\operatorname{Eig}^{\nu_{1}}\left(\mathrm{~A}, \lambda_{1}\right)+\operatorname{Eig}^{\nu_{2}}\left(\mathrm{~A}, \lambda_{1}\right)+\ldots+\operatorname{Eig}^{\nu_{r}}\left(\mathrm{~A}, \lambda_{r}\right)
$$

is direct.

Date: Please hand in before the lecture by 13th of December 2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. The intermediate steps for computations need to be provided.

