LINEAR ALGEBRA 1
 PROBLEM SHEET 7

PROF. DANIEL SKODLERACK

Problem $1\left(8+10+10^{*}\right.$, warm up for vector spaces). (i) Let $(\mathrm{V},+, \cdot)$ be a vector space. Prove
(a) that there is only one neutral element,
(b) that for every $v \in \mathrm{~V}$ the additive inverse is uniquely determined (we denote it by $-v$)
(c) and show:

$$
-(-v)=v \text { and } 0_{\mathbb{R}} \cdot v=0_{\mathrm{V}} .
$$

(ii) Show that the "strange" example, see Example 153(e), is a vector space.
(iii) $\left(^{*}\right)$ Think about why the "strange" example is in fact not so strange.

Problem $2(5+5+10$, subspaces). (i) Prove that the intersection of two subspaces of a vector space is a subspace.
(ii) Let W, U be subspaces of a vector space V . We define their sum via

$$
\mathrm{W}+\mathrm{U}:=\{w+u \mid w \in \mathrm{~W}, u \in \mathrm{U}\} .
$$

Prove that $\mathrm{W}+\mathrm{U}$ is a subspaces of V .
(iii) Find all subspaces of \mathbb{R}^{3} which contain the line $\mathrm{L}_{(1,1,0)}$ (this is the line through $(1,1,0)$ and the origin.)

Problem 3 (20, Linear independence). Which of those families of vectors are linearly independent?
(i) $(1,-2,3,1),(1,1,1,1),(1,0,0,1)$ in \mathbb{R}^{4}
(ii) $(1,2,1,-1),(2,1,0,0),(1,2,1,1),(0,-1.5,-1,-3)$ in \mathbb{R}^{4}
(iii) $\operatorname{In} \operatorname{Map}(\mathbb{R}, \mathbb{R}): 1, \cos (x), \cos (2 x), \cos (3 x)$
(iv) $\operatorname{In} \operatorname{Map}(\mathbb{R}, \mathbb{R}): 1, \cos (x), \cos (2 x), \cos (3 x), \cos ^{3}(x)$

Problem $4\left(10+10+10^{*}+20^{*}\right.$,cross product and generalisation). (i) Compute the following cross products

$$
(1,3,5) \times(-1,2,6),(-2,1,-1) \times(1,1,-1)
$$

(ii) Find a normal for the hyperplane through the points $(1,1,3),(1,-1,2),(1,1,1)$ whose length is the area of the triangle with those points as vertexes.
(iii) ${ }^{*}$) Try to generalise the cross product to higher dimensions, i.e. define a suitable vector product $\times\left(v^{(1)}, v^{(2)}, \ldots, v^{(n-1)}\right) \in \mathbb{R}^{n}$ for vectors $v^{(1)}, \ldots, v^{(n-1)} \in \mathbb{R}^{n}$. Give a formula and describe the length and the direction.
(iv) (*) Most ambitious: Give a proof for your assertions in (iii).

[^0]
[^0]: Date: Please hand in before the lecture by 22th of November 2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. The intermediate steps for computations need to be provided.

