LINEAR ALGEBRA 1 PROBLEM SHEET 7

PROF. DANIEL SKODLERACK

Problem 1 $(8 + 10 + 10^*, \text{ warm up for vector spaces})$. (i) Let $(V, +, \cdot)$ be a vector space. Prove

- (a) that there is only one neutral element,
- (b) that for every $v \in V$ the additive inverse is uniquely determined (we denote it by -v)
- (c) and show:

$$-(-v) = v$$
 and $0_{\mathbb{R}} \cdot v = 0_{\mathcal{V}}$.

- (ii) Show that the "strange" example, see Example 153(e), is a vector space.
- (iii) (*) Think about why the "strange" example is in fact not so strange.

Problem 2 (5+5+10, subspaces). (i) Prove that the intersection of two subspaces of a vector space is a subspace.

(ii) Let W, U be subspaces of a vector space V. We define their sum via

$$W + U := \{ w + u \mid w \in W, u \in U \}.$$

Prove that W + U is a subspaces of V.

(iii) Find all subspaces of \mathbb{R}^3 which contain the line $L_{(1,1,0)}$ (this is the line through (1,1,0) and the origin.)

Problem 3 (20, Linear independence). Which of those families of vectors are linearly independent?

- (i) (1, -2, 3, 1), (1, 1, 1, 1), (1, 0, 0, 1) in \mathbb{R}^4
- (ii) (1, 2, 1, -1), (2, 1, 0, 0), (1, 2, 1, 1), (0, -1.5, -1, -3) in \mathbb{R}^4
- (iii) In Map(\mathbb{R}, \mathbb{R}): 1, $\cos(x), \cos(2x), \cos(3x)$
- (iv) In Map(\mathbb{R}, \mathbb{R}): 1, cos(x), cos(2x), cos(3x), cos³(x)

Problem 4 $(10 + 10 + 10^* + 20^*, \text{cross product and generalisation})$. (i) Compute the following cross products

$$(1,3,5) \times (-1,2,6), (-2,1,-1) \times (1,1,-1)$$

- (ii) Find a normal for the hyperplane through the points (1,1,3), (1,-1,2), (1,1,1) whose length is the area of the triangle with those points as vertexes.
- (iii) (*) Try to generalise the cross product to higher dimensions, i.e. define a suitable vector product $\times (v^{(1)}, v^{(2)}, \dots, v^{(n-1)}) \in \mathbb{R}^n$ for vectors $v^{(1)}, \dots, v^{(n-1)} \in \mathbb{R}^n$. Give a formula and describe the length and the direction.
- (iv) (*) Most ambitious: Give a proof for your assertions in (iii).

Date: Please hand in before the lecture by **22th of November 2023**. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. The intermediate steps for computations need to be provided.