LINEAR ALGEBRA 1
 PROBLEM SHEET 10

PROF. DANIEL SKODLERACK

Problem 1 (40, complex numbers). (i) Prove that $(\mathbb{C},+, \cdot \mathbb{C})$ satisfies the distributivity law:

$$
(a, b) \cdot \mathbb{C}((c, d)+(e, f))=((a, b) \cdot \mathbb{C}(c, d))+((a, b) \cdot \mathbb{C}(e, f))
$$

(ii) Let V be a real vector space and $f: \mathrm{V} \rightarrow \mathrm{V}$ be an \mathbb{R}-linear map such that $f \circ f=-\operatorname{id}{ }_{\mathrm{V}}$. $(f(f(v))=-v)$ We define

$$
(a+b i) \odot v:=a v+b f(v)
$$

Prove that $(\mathrm{V},+, \odot)$ is a complex vector space.
(iii) $\mathrm{V}=\mathbb{R}^{2}$. We define a complex scalar multiplication \odot via

$$
(a+b i) \odot\binom{x_{1}}{x_{2}}:=\binom{a x_{1}+b\left(x_{1}-2 x_{2}\right)}{a x_{2}+b\left(x_{1}-x_{2}\right)}
$$

Prove that $(\mathrm{V},+, \odot)$ is a complex vector space.
(iv) $\mathbb{C}=\mathbb{R}^{2}$ is a complex vector space using complex multiplication as scalar multiplication. Find the corresponding \mathbb{R}-linear map f from (ii) which describes this complex scalar multiplication.

Problem 2 (30, multiplicities). Find the geometric and algebraic multiplicities for the following matrices A for all $\lambda \in \operatorname{Spec}(\mathrm{A})$.
(i)

$$
\left(\begin{array}{ccccccccc}
1 & 1 & & & & & & & \\
& 1 & 1 & & & & & & \\
& & 1 & & & & & & \\
& & & 1 & 1 & & & & \\
& & & & 1 & & & & \\
& & & & & 2 & & & \\
& & & & & & 2 & & \\
& & & & & & & 3 & \\
& & & & & & & & 3
\end{array}\right)
$$

(ii)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 2 \\
3 & 2 & 1
\end{array}\right)
$$

(iii)

$$
\left(\begin{array}{cccc}
0 & 1 & 2 & 0 \\
-1 & 8 & 8 & 2 \\
1 & -4 & -4 & -1 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

Problem 3 (10 , similarity over \mathbb{C} and \mathbb{R}). Let A and B be real square matrices of size n. Suppose A and B are similar over \mathbb{C}, i.e. there exists an invertible matrix $\mathrm{C} \in \mathbb{C}^{n \times n}$ such that $\mathrm{C}^{-1} \mathrm{AC}=\mathrm{B}$. Prove that A and B are similar over \mathbb{R}, i.e. there exists an invertible matrix $\mathrm{F} \in \mathbb{R}^{n \times n}$ such that $\mathrm{F}^{-1} \mathrm{AF}=\mathrm{B}$. Hint: Consider for a certain matrix $\mathrm{C}=\mathrm{C}_{1}+i \mathrm{C}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2} \in \mathbb{R}^{n \times n}$, the polynomial function $p(\lambda)=\operatorname{det}\left(\mathrm{C}_{1}+\lambda \mathrm{C}_{2}\right), \lambda \in \mathbb{C}$.

[^0]Problem 4 (40, geometric multiplicity 1 case). Let $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}$ be real numbers.
(i) Compute the characteristic polynomial of

$$
\left(\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & -a_{0} \\
1 & \ddots & & \vdots & \vdots \\
& \ddots & \ddots & \vdots & \vdots \\
& & 1 & 0 & -a_{n-2} \\
& & & 1 & -a_{n-1}
\end{array}\right) .
$$

(ii) Let λ be a complex eigenvalue of A. Show that its geometric multiplicity is 1 .
(iii) Is the matrix

$$
\left(\begin{array}{lllr}
& & & 2 \\
1 & & & 3 \\
& 1 & & -1 \\
& & 1 & -3
\end{array}\right)
$$

diagonlizable?
(iv) Find a real matrix A of size 4 with complex eigenvalues $1-i, 1+i, 2,3$. Given two such matrices, are they similar over \mathbb{R} ?

Problem 5. aufgabe[20*, complex and real eigenspaces] Let A be a real matrix of size n and $\lambda \in$ $\operatorname{Spec}_{\mathbb{R}}(\mathrm{A})$. Then:
(i) $\operatorname{Eig}_{\mathbb{C}}(\mathrm{A}, \lambda)=\operatorname{Eig}_{\mathbb{R}}(\mathrm{A}, \lambda)+i \operatorname{Eig}_{\mathbb{R}}(\mathrm{A}, \lambda)$.
(ii) $\operatorname{dim}_{\mathbb{C}} \operatorname{Eig}_{\mathbb{C}}(\mathrm{A}, \lambda)=\operatorname{dim}_{\mathbb{R}} \operatorname{Eig}_{\mathbb{R}}(\mathrm{A}, \lambda)$.

[^0]: Date: Please hand in before the lecture by 20th of December 2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. The intermediate steps for computations need to be provided.

