LINEAR ALGEBRA 1 PROBLEM SHEET 10

PROF. DANIEL SKODLERACK

Problem 1 (40, complex numbers). (i) Prove that $(\mathbb{C}, +, \cdot_{\mathbb{C}})$ satisfies the distributivity law: $(a,b) \cdot_{\mathbb{C}} ((c,d) + (e,f)) = ((a,b) \cdot_{\mathbb{C}} (c,d)) + ((a,b) \cdot_{\mathbb{C}} (e,f))$

(ii) Let V be a real vector space and $f: V \to V$ be an \mathbb{R} -linear map such that $f \circ f = -id_V$. (f(f(v)) = -v) We define

$$(a+bi) \odot v := av + bf(v).$$

Prove that $(V, +, \odot)$ is a complex vector space.

(iii) $V = \mathbb{R}^2$. We define a complex scalar multiplication \odot via

$$(a+bi) \odot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} := \begin{pmatrix} ax_1 + b(x_1 - 2x_2) \\ ax_2 + b(x_1 - x_2) \end{pmatrix}$$

Prove that $(V, +, \odot)$ is a complex vector space.

(iv) $\mathbb{C} = \mathbb{R}^2$ is a complex vector space using complex multiplication as scalar multiplication. Find the corresponding \mathbb{R} -linear map f from (ii) which describes this complex scalar multiplication.

Problem 2 (30, multiplicities). Find the geometric and algebraic multiplicities for the following matrices A for all $\lambda \in \text{Spec}(A)$.

(i)

(ii)

(iii)

Problem 3 (10, similarity over \mathbb{C} and \mathbb{R}). Let A and B be real square matrices of size *n*. Suppose A and B are similar over \mathbb{C} , i.e. there exists an invertible matrix $C \in \mathbb{C}^{n \times n}$ such that $C^{-1}AC = B$. Prove that A and B are similar over \mathbb{R} , i.e. there exists an invertible matrix $F \in \mathbb{R}^{n \times n}$ such that $F^{-1}AF = B$. *Hint: Consider for a certain matrix* $C = C_1 + iC_2$, $C_1, C_2 \in \mathbb{R}^{n \times n}$, the polynomial function $p(\lambda) = \det(C_1 + \lambda C_2), \lambda \in \mathbb{C}$.

Date: Please hand in before the lecture by **20th of December 2023**. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. The intermediate steps for computations need to be provided.

Problem 4 (40, geometric multiplicity 1 case). Let $a_0, a_1, a_2, \ldots, a_{n-1}$ be real numbers.

(i) Compute the characteristic polynomial of

$$\begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & \vdots \\ & \ddots & \ddots & \vdots & \vdots \\ & & 1 & 0 & -a_{n-2} \\ & & & 1 & -a_{n-1} \end{pmatrix}.$$

- (ii) Let λ be a complex eigenvalue of A. Show that its geometric multiplicity is 1.
- (iii) Is the matrix

$$\left(\begin{array}{rrrr}
 & 2 \\
1 & 3 \\
 & 1 & -1 \\
 & 1 & -3
\end{array}\right)$$

diagonlizable?

(iv) Find a real matrix A of size 4 with complex eigenvalues 1 - i, 1 + i, 2, 3. Given two such matrices, are they similar over \mathbb{R} ?

Problem 5. aufgabe[20^{*}, complex and real eigenspaces] Let A be a real matrix of size n and $\lambda \in \text{Spec}_{\mathbb{R}}(A)$. Then:

- (i) $\operatorname{Eig}_{\mathbb{C}}(A, \lambda) = \operatorname{Eig}_{\mathbb{R}}(A, \lambda) + i\operatorname{Eig}_{\mathbb{R}}(A, \lambda).$
- (ii) $\dim_{\mathbb{C}} \operatorname{Eig}_{\mathbb{C}}(A, \lambda) = \dim_{\mathbb{R}} \operatorname{Eig}_{\mathbb{R}}(A, \lambda).$