LINEAR ALGEBRA 1
 PROBLEM SHEET 6

PROF. DANIEL SKODLERACK

Problem 1 (20 points, angles of a polygon)). Consider the polygon with the vertexes

$$
\mathrm{A}=(1,2), \mathrm{B}=(2,3), \mathrm{C}=\left(\frac{5}{2}, \frac{6-\sqrt{3}}{2}\right), \mathrm{D}=\left(\frac{3}{2}, \frac{6-\sqrt{3}}{2}\right)
$$

in that order. Compute the angles at the vertexes,

$$
\angle(\mathrm{D}, \mathrm{~A}, \mathrm{~B}), \angle(\mathrm{A}, \mathrm{~B}, \mathrm{C}), \angle(\mathrm{B}, \mathrm{C}, \mathrm{D}), \angle(\mathrm{C}, \mathrm{D}, \mathrm{~A}),
$$

Problem $2\left(10+10^{*}+10\right.$ points, generalized parallelogram law). (i) (Parallelepiped law) Prove

$$
\text { for } v, w, u \in \mathbb{R}^{n}
$$

$\|u+v+w\|^{2}+\|u-v+w\|^{2}+\|u+v-w\|^{2}+\|u-v-w\|^{2}=4\left(\|u\|^{2}+\|v\|^{2}+\|w\|^{2}\right)$
(ii) $\left(^{*}\right)$ Generalize and prove (i) for a paralleletope spanned by m vectors, $m \geqslant 2$.
(iii) Let $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be points in \mathbb{R}^{n} which satisfy

$$
\|\overrightarrow{\mathrm{AC}}\|^{2}+\|\overrightarrow{\mathrm{BD}}\|^{2}=\|\overrightarrow{\mathrm{AB}}\|^{2}+\|\overrightarrow{\mathrm{BC}}\|^{2}+\|\overrightarrow{\mathrm{CD}}\|^{2}+\|\overrightarrow{\mathrm{DA}}\|^{2}
$$

Prove that $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{DC}}$. (Hint: Draw a picture.)
Problem 3 (20 points, distance of a point to an affine subspace). Find the distance of the given point P_{0} to the given set S.
(i) $\mathrm{P}_{0}=(1,-1), \mathrm{S}$ is the line through $(2,3)$ and $(1,0)$.
(ii) $\mathrm{P}_{0}=(1,0,1), \mathrm{S}$ is the plane through $(1,1,2),(0,1,-1)$ and $(0,0,2)$.
(iii) $\mathrm{P}_{0}=(1,0,0,0), \mathrm{S}$ is the line through $(5,1,2,1)$ and $(4,1,1,1)$.
(iv) $\mathrm{P}_{0}=(1,0,0,0), \mathrm{S}$ is the plane through $(-1,1,2,3),(0,1,1,0)$ and $(1,1,-1,2)$.

Problem 4 (20 points, lines and planes). Describe the following sets with (a) a vector form, (b) parametric equations and (c) as an intersection of hyperplanes.
(i) The line through the points $(1,0,0,1)$ and $(2,1,0,1)$.
(ii) The plane throught the points $(1,1,1,-1),(1,0,1,0)$ and $(1,2,1,2)$.

