Math 1112 / 2023 Fall

Chapter 5

- Find a 3×3 matrix A that has eigenvalues $1,-1$ and 0 , and for which

$$
[1,-1,1]^{T}, \quad[1,1,0]^{T}, \quad[1,-1,0]^{T}
$$

are their corresponding eigenvectors.

- Let $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 0 \\ -5 & 5 & 10\end{array}\right]$.
(1) Compute the eigenvalues of A, and find a basis of the eigensapces of A.
(2) Let $\operatorname{adj}(A)$ be the adjoint matrix of A. Find the eigenvalues of $3 I_{3}+$ $\operatorname{adj}(A)$.
- Find $\operatorname{det}(A)$ given that A has $p(\lambda)$ as its characteristic polynomial.
(1) $p(\lambda)=\lambda^{3}-2 \lambda^{2}+\lambda+5$,
(2) $p(\lambda)=\lambda^{4}-\lambda^{3}+7$.
- The characteristic polynomial of a matrix A is given. Find the size of the matrix and the possible dimensions of its eigenspaces.
(1) $\lambda^{2}(\lambda-1)(\lambda-2)^{3} ; \quad$ (2) $\lambda^{3}-3 \lambda^{2}+3 \lambda-1$.
- Compute the characteristic polynomial of

$$
A=\left[\begin{array}{cccc}
& & & 2 \\
1 & & & 3 \\
& 1 & & -1 \\
& & 1 & -3
\end{array}\right]
$$

Is it diagonalizable?

- Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Show that
(1) A is diagonalizable if $(a-d)^{2}+4 b c>0$;
(2) A is not diagonalizable if $(a-d)^{2}+4 b c<0$;
- Show that A and B are not similar, where A and B are given by

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 0 & 2 \\
3 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 2 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

- Let

$$
A=\left[\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right]
$$

(a) Find the eigenvalues of A.
(b) For each eigenvalue λ, find the rank of the matrix $\lambda I-A$.
(c) Is A diagonalizable? Justify your conclusion.

- Let

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

Find A^{-2301} and $\sum_{k=1}^{99} A^{k}$.

Chapter 6

- Let V be an inner product space. Show that if \mathbf{u} and \mathbf{v} are orthogonal unit vectors in V, then $\|\mathbf{u}-\mathbf{v}\|=\sqrt{2}$.
- Do there exists scalers k and l such that the vectors

$$
\mathbf{p}_{1}=2+k x+6 x^{2}, \quad \mathbf{p}_{2}=l+5 x+3 x^{2}, \quad \mathbf{p}_{3}=1+2 x+3 x^{2}
$$

are mutually orthogonal with respect to the standard inner product on P_{2} ?

- On P_{2}, define

$$
\langle p(x), q(x)\rangle=p(1) q(1)+p^{\prime}(1) q^{\prime}(1)+p^{\prime \prime}(1) q^{\prime \prime}(1)
$$

(1) Prove that $\langle\cdot, \cdot\rangle$ is an inner product on P_{2}.
(2) Apply the Gram-Schmidt process to transform the standard basis $\left\{p_{1}(x), p_{2}(x), p_{3}(x)\right\}$ into an orthonormal basis $\left\{h_{1}(x), h_{2}(x), h_{3}(x)\right\}$.

- Find a basis for the orthogonal complement of the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\mathbf{v}_{1}=(1,4,5,2), \quad \mathbf{v}_{2}=(2,1,3,0), \quad \mathbf{v}_{3}=(-1,3,2,2)
$$

Here we use Euclidean inner product.

- Let the inner product on P_{2} be given by $\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)$. Let

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

and $W=\operatorname{span}\{A, B\}$.
(1) Verify that A and B are orthogonal.
(2) Find $C_{1} \in W$ and $C_{2} \in W^{\perp}$ such that $C=C_{1}+C_{2}$.

- Find the $Q R$-decomposition of

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

2. Find the least squares solution of $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & -2 \\
1 & 1 & 0 \\
1 & 1 & -1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
6 \\
0 \\
9 \\
3
\end{array}\right]
$$

And find the least squares error vector and least squares error. Besides, verify that the least squares error is orthogonal to the column space of A.

- Suppose we have observed the following data.

a_{i}	1	-1	2	3	-2	-3	0
b_{i}	1.5	1	4.5	8	-2	-4	0.5

Using the least square method, find the affine regression line r (of the form $r(a)=b$) for the above data.

- Find the orthogonal projection of $\mathbf{u}=(2,1,3)$ on the subspace of \mathbb{R}^{3} spanned by the vectors $\mathbf{v}_{1}=(1,1,0)$ and $\mathbf{v}_{2}=(1,2,1)$.

Chapter 7

- Find all values of a, b, c such that the matrix

$$
\left[\begin{array}{ccc}
a & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
b & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
c & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

is orthogonal.

- Find a matrix P that orthogonally diagonalizes

$$
\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

- Let $Q_{A}(\mathbf{x})=2 x_{1}^{2}+x_{2}^{2}+a x_{3}^{2}+2 x_{1} x_{2}+2 b x_{1} x_{3}+2 x_{2} x_{3}$, where A is the symmetric matrix associated with $Q_{A}(\mathbf{x})$. Assume that $\mathbf{v}=(1,1,1)$ is an eigenvector of A.
(1) Find the value of a and b.
(2) Find an orthogonal change of variables $\mathbf{y}=P^{\top} \mathbf{x}$, find the expression $Q_{A}(\mathbf{y})$.
(3) Determine whether A is positive definite.
- (1) Express the quadratic form $\left(c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}\right)^{2}$ in the matrix notation $x^{T} A \mathbf{x}$ for A symmetric.
(2) Can the above quadratic form be positive definite?
- (1) Determine the definiteness of the following symmetric matrices.

$$
\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right], \quad\left[\begin{array}{ccc}
c & a & b \\
a & 1 & 0 \\
b & 0 & 1
\end{array}\right](a, b, c \in \mathbb{R}), \quad\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -2 & 1 \\
1 & 1 & -3
\end{array}\right]
$$

(2) Show that a positive definite symmetric matrix must have positive determinant.

Chapter 8

- Given $\mathbf{v}_{0}=(1,-1,0) \in \mathbb{R}^{3}$, we define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ as

$$
T(\mathbf{v})=\mathbf{v} \times \mathbf{v}_{0}
$$

(1) Show that T is linear.
(2) Compute the kernel of T, and use the dimension equality to compute the dimension of the range of T.
(3) Compute the range of T directly, and find its dimension.
(4) Compute the matrix for T relative to the standard basis of \mathbb{R}^{3}, and use it to find the rank and nullity of T.

- Let $A=\left[\begin{array}{cccc}3 & -2 & 1 & 0 \\ 1 & 6 & 2 & 1 \\ -3 & 0 & 7 & 1\end{array}\right]$ be the matrix for $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ relative to the bases $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ and $B^{\prime}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$, where

$$
\begin{gathered}
\mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
2 \\
1 \\
-1 \\
-1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
4 \\
-1 \\
2
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
6 \\
9 \\
4 \\
2
\end{array}\right], \\
\mathbf{w}_{1}=\left[\begin{array}{l}
0 \\
8 \\
8
\end{array}\right], \quad \mathbf{w}_{2}=\left[\begin{array}{c}
-7 \\
8 \\
1
\end{array}\right], \quad \mathbf{w}_{3}=\left[\begin{array}{c}
-6 \\
9 \\
1
\end{array}\right] .
\end{gathered}
$$

(a) Find $\left[T\left(\mathbf{v}_{i}\right)\right]_{B^{\prime}}$ for $1 \leq i \leq 4$.
(b) Find $T\left(\mathbf{v}_{i}\right)$ for $1 \leq i \leq 4$.
(c) Find a formula for $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]\right)$, and evaluate $T\left(\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 0\end{array}\right]\right)$.

- Let $T_{1}: P_{1} \rightarrow P_{2}$ be the linear transformation defined by

$$
T_{1}\left(a_{0}+a_{1} x\right)=2 a_{0}-3 a_{1} x
$$

Let $T_{2}: P_{2} \rightarrow P_{3}$ be the linear transformation defined by

$$
T_{2}\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=3 a_{0} x+3 a_{1} x+3 a_{2} x^{3}
$$

Let $B=\{1, x\}, B^{\prime \prime}=\left\{1, x, x^{2}\right\}, B^{\prime}=\left\{1, x, x^{2}, x^{3}\right\}$.
(1) Compute $\left[T_{2} \circ T_{1}\right]_{B^{\prime}, B}$.
(2) Compute $\left[T_{2}\right]_{B^{\prime}, B^{\prime \prime}}$ and $\left[T_{1}\right]_{B^{\prime \prime}, B}$.
(3) What is the relation between $\left[T_{2} \circ T_{1}\right]_{B^{\prime}, B},\left[T_{2}\right]_{B^{\prime}, B^{\prime \prime}}$ and $\left[T_{1}\right]_{B^{\prime \prime}, B}$.

- Determine whether the matrix transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by the equations is one-to-one; if so, find the standard matrix for the inverse operator T^{-1}, and find $T^{-1}\left(w_{1}, w_{2}, w_{3}\right)$.

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{c}
x_{1}-2 x_{2}+2 x_{3} \\
2 x_{1}+x_{2}+x_{3} \\
x_{1}+x_{2}
\end{array}\right]
$$

- Suppose that V has basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$, and $T: V \rightarrow V$ is a linear operator given by $T\left(\mathbf{v}_{i}\right)=\mathbf{v}_{i+1}$ for $i=1, \ldots, n-1$ and $T\left(\mathbf{v}_{n}\right)=\mathbf{0}$.
(1) Find the matrix representation of T relative to the basis B.
(2) Prove that $T^{n}=0, T^{n-1} \neq 0$. Here $T^{n}=T \circ T \circ \ldots \circ T$ for n copies of T.
- (1) Let $f: V \rightarrow W$ and $g: W \rightarrow U$ be linear maps. Show that $g \circ f$: $V \rightarrow U$ is a linear transformation.
(2) Consider $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}, f\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+3 x_{3}, 2 x_{3}-x_{2},-x_{3}-x_{2}-\right.$ $\left.2 x_{1}, 4 x_{1}+3 x_{2}\right)$. Compute the kernel and range of f.
(3) Consider $g: C[0,1] \rightarrow \mathbb{R}^{3}, g(\varphi)=(\varphi(0), \varphi(0.5), \varphi(1))$. Prove that g is a linear transformation.
(4) Let $W=\{\varphi \in C[0,1]: \varphi(0)=\varphi(1)\}$. Ler $U=g(W)=\{g(\varphi): \varphi \in W\}$. Show that $U \cap \operatorname{Ker}(f)=\{0\}$.

SVD

- Find the singular values of A, B and C, where

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
6 & 4 \\
0 & 0 \\
4 & 0
\end{array}\right], \quad C=\left[\begin{array}{ccc}
-2 & -1 & 2 \\
2 & 1 & -2
\end{array}\right]
$$

- (1) Prove that the singular values of $A^{T} A$ are the squares of the singular values of A.
(2) Prove that if $A=U \Sigma V^{T}$ is a singular value decomposition of A, then U orthogonally diagonalizes $A^{T} A$.

