Reviewing Problems for final

Chapter 5

- Find a 3×3 matrix A that has eigenvalues 1, -1 and 0, and for which
 - $[1, -1, 1]^T$, $[1, 1, 0]^T$, $[1, -1, 0]^T$

are their corresponding eigenvectors.

• Let $A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 0 \\ -5 & 5 & 10 \end{bmatrix}$.

(1) Compute the eigenvalues of A, and find a basis of the eigensapces of A. (2) Let adj(A) be the adjoint matrix of A. Find the eigenvalues of $3I_3 +$ $\operatorname{adj}(A).$

• Find det(A) given that A has $p(\lambda)$ as its characteristic polynomial. (1) $p(\lambda) = \lambda^3 - 2\lambda^2 + \lambda + 5$, (2) $p(\lambda) = \lambda^4 - \lambda^3 + 7$.

• The characteristic polynomial of a matrix A is given. Find the size of the matrix and the possible dimensions of its eigenspaces. (1) $\lambda^2(\lambda - 1)(\lambda - 2)^3$; (2) $\lambda^3 - 3\lambda^2 + 3\lambda - 1$.

• Compute the characteristic polynomial of

$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \\ 1 & -1 \\ & 1 & -3 \end{bmatrix}.$$

Is it diagonalizable?

• Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that (1) A is diagonalizable if $(a - d)^2 + 4bc > 0;$ (2) A is not diagonalizable if $(a - d)^2 + 4bc < 0;$

• Show that A and B are not similar, where A and B are given by

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 3 & 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

 \bullet Let

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}.$$

(a) Find the eigenvalues of A.

(b) For each eigenvalue λ , find the rank of the matrix $\lambda I - A$.

(c) Is A diagonalizable? Justify your conclusion.

 \bullet Let

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}.$$

Find A^{-2301} and $\sum_{k=1}^{99} A^k$.

Chapter 6

• Let V be an inner product space. Show that if **u** and **v** are orthogonal unit vectors in V, then $\|\mathbf{u} - \mathbf{v}\| = \sqrt{2}$.

• Do there exists scalers k and l such that the vectors

 $\mathbf{p}_1 = 2 + kx + 6x^2$, $\mathbf{p}_2 = l + 5x + 3x^2$, $\mathbf{p}_3 = 1 + 2x + 3x^2$

are mutually orthogonal with respect to the standard inner product on P_2 ?

• On P_2 , define

$$\langle p(x), q(x) \rangle = p(1)q(1) + p'(1)q'(1) + p''(1)q''(1).$$

(1) Prove that $\langle \cdot, \cdot \rangle$ is an inner product on P_2 .

(2) Apply the Gram-Schmidt process to transform the standard basis $\{p_1(x), p_2(x), p_3(x)\}$ into an orthonormal basis $\{h_1(x), h_2(x), h_3(x)\}$.

 \bullet Find a basis for the orthogonal complement of the subspace of \mathbb{R}^4 spanned by the vectors

$$\mathbf{v}_1 = (1, 4, 5, 2), \quad \mathbf{v}_2 = (2, 1, 3, 0), \quad \mathbf{v}_3 = (-1, 3, 2, 2).$$

Here we use Euclidean inner product.

• Let the inner product on P_2 be given by $\langle A, B \rangle = \operatorname{tr}(B^T A)$. Let

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

and $W = \operatorname{span}\{A, B\}$.

(1) Verify that A and B are orthogonal.

(2) Find $C_1 \in W$ and $C_2 \in W^{\perp}$ such that $C = C_1 + C_2$.

• Find the QR-decomposition of

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

2. Find the least squares solution of $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 6 \\ 0 \\ 9 \\ 3 \end{bmatrix}.$$

And find the least squares error vector and least squares error. Besides, verify that the least squares error is orthogonal to the column space of A.

• Suppose we have observed the following data.

a_i	1	-1	2	3	-2	-3	0
b_i	1.5	1	4.5	8	-2	-4	0.5

Using the least square method, find the affine regression line r (of the form r(a) = b) for the above data.

• Find the orthogonal projection of $\mathbf{u} = (2, 1, 3)$ on the subspace of \mathbb{R}^3 spanned by the vectors $\mathbf{v}_1 = (1, 1, 0)$ and $\mathbf{v}_2 = (1, 2, 1)$.

Chapter 7

• Find all values of a, b, c such that the matrix

$$\begin{bmatrix} a & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ b & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ c & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

is orthogonal.

• Find a matrix P that orthogonally diagonalizes

$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}.$$

• Let $Q_A(\mathbf{x}) = 2x_1^2 + x_2^2 + ax_3^2 + 2x_1x_2 + 2bx_1x_3 + 2x_2x_3$, where A is the symmetric matrix associated with $Q_A(\mathbf{x})$. Assume that $\mathbf{v} = (1, 1, 1)$ is an eigenvector of A.

(1) Find the value of a and b.

(2) Find an orthogonal change of variables $\mathbf{y} = P^{\top} \mathbf{x}$, find the expression $Q_A(\mathbf{y})$.

(3) Determine whether A is positive definite.

• (1) Express the quadratic form $(c_1x_1 + c_2x_2 + \ldots + c_nx_n)^2$ in the matrix notation $x^T A \mathbf{x}$ for A symmetric.

(2) Can the above quadratic form be positive definite?

• (1) Determine the definiteness of the following symmetric matrices.

٢o	1]	$\left[c \right]$	a	b		$\left[-1\right]$	0	1]	
1	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$,	a	1	0	$(a, b, c \in \mathbb{R}),$	0	-2	1	
ĹŢ	3	b	0	1		1	1	-3	

(2) Show that a positive definite symmetric matrix must have positive determinant.

Chapter 8

• Given
$$\mathbf{v}_0 = (1, -1, 0) \in \mathbb{R}^3$$
, we define $T : \mathbb{R}^3 \to \mathbb{R}^3$ as

$$T(\mathbf{v}) = \mathbf{v} \times \mathbf{v}_0.$$

(1) Show that T is linear.

(2) Compute the kernel of T, and use the dimension equality to compute the dimension of the range of T.

(3) Compute the range of T directly, and find its dimension.

(4) Compute the matrix for T relative to the standard basis of \mathbb{R}^3 , and use it to find the rank and nullity of T.

• Let $A = \begin{bmatrix} 3 & -2 & 1 & 0 \\ 1 & 6 & 2 & 1 \\ -3 & 0 & 7 & 1 \end{bmatrix}$ be the matrix for $T : \mathbb{R}^4 \to \mathbb{R}^3$ relative to the bases $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ and $B' = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$, where

$$\mathbf{v}_{1} = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 2\\1\\-1\\-1 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 1\\4\\-1\\2 \end{bmatrix}, \quad \mathbf{v}_{4} = \begin{bmatrix} 6\\9\\4\\2 \end{bmatrix}, \\ \mathbf{w}_{1} = \begin{bmatrix} 0\\8\\8 \end{bmatrix}, \quad \mathbf{w}_{2} = \begin{bmatrix} -7\\8\\1 \end{bmatrix}, \quad \mathbf{w}_{3} = \begin{bmatrix} -6\\9\\1 \end{bmatrix}.$$

(a) Find $[T(\mathbf{v}_i)]_{B'}$ for $1 \le i \le 4$. (b) Find $T(\mathbf{v}_i)$ for $1 \le i \le 4$.

(b) Find a formula for
$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \right)$$
, and evaluate $T\left(\begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix} \right)$

• Let $T_1: P_1 \to P_2$ be the linear transformation defined by

$$T_1(a_0 + a_1 x) = 2a_0 - 3a_1 x.$$

Let $T_2: P_2 \to P_3$ be the linear transformation defined by

$$T_2(a_0 + a_1x + a_2x^2) = 3a_0x + 3a_1x + 3a_2x^3.$$

Let $B = \{1, x\}, B'' = \{1, x, x^2\}, B' = \{1, x, x^2, x^3\}.$ (1) Compute $[T_2 \circ T_1]_{B',B}$.

- (2) Compute $[T_2]_{B',B''}$ and $[T_1]_{B'',B}$.
- (3) What is the relation between $[T_2 \circ T_1]_{B',B}$, $[T_2]_{B',B''}$ and $[T_1]_{B'',B}$.

• Determine whether the matrix transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by the equations is one-to-one; if so, find the standard matrix for the inverse operator T^{-1} , and find $T^{-1}(w_1, w_2, w_3)$.

$$T(x_1, x_2, x_3) = \begin{bmatrix} x_1 - 2x_2 + 2x_3 \\ 2x_1 + x_2 + x_3 \\ x_1 + x_2 \end{bmatrix}.$$

• Suppose that V has basis $B = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$, and $T: V \to V$ is a linear operator given by $T(\mathbf{v}_i) = \mathbf{v}_{i+1}$ for $i = 1, \dots, n-1$ and $T(\mathbf{v}_n) = \mathbf{0}$.

(1) Find the matrix representation of T relative to the basis B.

(2) Prove that $T^n = 0$, $T^{n-1} \neq 0$. Here $T^n = T \circ T \circ \ldots \circ T$ for *n* copies of *T*.

• (1) Let $f: V \to W$ and $g: W \to U$ be linear maps. Show that $g \circ f: V \to U$ is a linear transformation.

(2) Consider $f : \mathbb{R}^3 \to \mathbb{R}^4$, $f(x_1, x_2, x_3) = (2x_1 + 3x_3, 2x_3 - x_2, -x_3 - x_2 - 2x_1, 4x_1 + 3x_2)$. Compute the kernel and range of f.

(3) Consider $g: C[0,1] \to \mathbb{R}^3$, $g(\varphi) = (\varphi(0), \varphi(0.5), \varphi(1))$. Prove that g is a linear transformation.

(4) Let $W = \{\varphi \in C[0,1] : \varphi(0) = \varphi(1)\}$. Let $U = g(W) = \{g(\varphi) : \varphi \in W\}$. Show that $U \cap \text{Ker}(f) = \{0\}$.

• Find the singular values of A, B and C, where

<u>SVD</u>

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 6 & 4 \\ 0 & 0 \\ 4 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} -2 & -1 & 2 \\ 2 & 1 & -2 \end{bmatrix}.$$

• (1) Prove that the singular values of $A^T A$ are the squares of the singular values of A.

(2) Prove that if $A = U\Sigma V^T$ is a singular value decomposition of A, then U orthogonally diagonalizes $A^T A$.

8