LINEAR ALGEBRA 1 PROBLEM SHEET 11

PROF. DANIEL SKODLERACK

Problem 1 (25, diagonalization). Which of the following matrices A are diagonalizable over \mathbb{R} ? If so, then compute a transition matrix P such that $P^{-1}AP$ is diagonal.

(i)

	$\left(\begin{array}{rrrr} -2 & 5 & -4 \\ 4 & -3 & 4 \\ 3 & -5 & 5 \end{array}\right)$
(11)	$\left(\begin{array}{rrrrr} -1 & 2 & 2 & 0 \\ -4 & 5 & 2 & 0 \\ 8 & -4 & -1 & 0 \\ -4 & 2 & 2 & 3 \end{array}\right)$
(III)	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
oblem 2 (20, finite dimension	al inner product space). L

Problem 2 (20, finite dimensional inner product space). Let A be a real symmetric matrix of size n. Prove that the following assertions are equivalent:

- (i) \langle , \rangle_A is an inner product.
- (ii) All eigenvalues of A are positive.

Problem 3 ($10+5+10^*$, infinite dimensional inner product space). We consider on C([0,1]), the set of continuous real-valued functions on [0,1], the pairing

$$\langle f,g\rangle := \int_0^1 f(x)g(x)dx.$$

- (i) Prove that \langle , \rangle is an inner product.
- (ii) We restrict \langle , \rangle on the subset V of all real polynomial functions on [0, 1]. Given a nonnegative integer n, let p_n be the polynomial function given by $p_n(x) = x^n, x \in [0, 1]$. Find
 - (a) the orthogonal complement of p_1 in V.
 - (b) the orthogonal complement of $\{p_1, p_3, p_5, \ldots\}$ in V.

Problem 4 (10+10+10^{*}, finite dimensional inner products spaces). Consider the following pairings \langle, \rangle_A . Determine if the pairing is an inner product and in any case compute the Gram matrix with respect to the given basis.

(i)

(ii)

$$\begin{pmatrix} 5 & .1 \\ 1 & 2 \end{pmatrix}, \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\}$$

Date: Please hand in before the lecture by **27th of December 2023**. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. The intermediate steps for computations need to be provided.

(iii)

$$\left(\begin{array}{rrrr}1 & 1 & 1\\1 & 2 & -1\\1 & -1 & 1\end{array}\right), \ \left\{\left(\begin{array}{r}1\\2\\3\end{array}\right), \left(\begin{array}{r}-1\\0\\1\end{array}\right), \left(\begin{array}{r}0\\1\\1\end{array}\right)\right\}$$