LINEAR ALGEBRA 1
 PROBLEM SHEET 11

PROF. DANIEL SKODLERACK

Problem 1 (25, diagonalization). Which of the following matrices A are diagonalizable over \mathbb{R} ? If so, then compute a transition matrix P such that $\mathrm{P}^{-1} \mathrm{AP}$ is diagonal.
(i)

$$
\left(\begin{array}{rrr}
-2 & 5 & -4 \\
4 & -3 & 4 \\
3 & -5 & 5
\end{array}\right)
$$

(ii)

$$
\left(\begin{array}{rrrr}
-1 & 2 & 2 & 0 \\
-4 & 5 & 2 & 0 \\
8 & -4 & -1 & 0 \\
-4 & 2 & 2 & 3
\end{array}\right)
$$

(iii)

$$
\left(\begin{array}{rrrr}
-2 & 1 & -1 & 1 \\
-4 & 1 & -4 & 0 \\
1 & -1 & 0 & -1 \\
2 & 0 & 2 & 1
\end{array}\right)
$$

Problem 2 (20, finite dimensional inner product space). Let A be a real symmetric matrix of size n. Prove that the following assertions are equivalent:
(i) $\langle,\rangle_{\mathrm{A}}$ is an inner product.
(ii) All eigenvalues of A are positive.

Problem $3\left(10+5+10^{*}\right.$, infinite dimensional inner product space). We consider on $\mathrm{C}([0,1])$, the set of continuous real-valued functions on [0, 1], the pairing

$$
\langle f, g\rangle:=\int_{0}^{1} f(x) g(x) d x .
$$

(i) Prove that \langle,$\rangle is an inner product.$
(ii) We restrict \langle,$\rangle on the subset \mathrm{V}$ of all real polynomial functions on $[0,1]$. Given a nonnegative integer n, let p_{n} be the polynomial function given by $p_{n}(x)=x^{n}, x \in[0,1]$. Find
(a) the orthogonal complement of p_{1} in V .
(b) the orthogonal complement of $\left\{p_{1}, p_{3}, p_{5}, \ldots\right\}$ in V .

Problem $4\left(10+10+10^{*}\right.$, finite dimensional inner products spaces). Consider the following pairings $\langle,\rangle_{\mathrm{A}}$. Determine if the pairing is an inner product and in any case compute the Gram matrix with respect to the given basis.
(i)

$$
\left(\begin{array}{rr}
5 & .1 \\
1 & 2
\end{array}\right),\left\{\binom{1}{1},\binom{1}{-1}\right\}
$$

(ii)

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right),\left\{\binom{1}{0},\binom{2}{3}\right\}
$$

Date: Please hand in before the lecture by 27th of December 2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. The intermediate steps for computations need to be provided.
(iii)

$$
\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & -1 \\
1 & -1 & 1
\end{array}\right),\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

