Specific Instructions for students:

- The time duration for this exam is 100 minutes.
- Computers and calculators are prohibited in the exam.
- Answers can be written in either Chinese or English.
\star For problems 3-8, please show details of calculations or deductions. A correct answer with no details can not earn points.

Notations and conventions:

$-\mathbb{R}$ is the set of real numbers.

- I denotes an identity matrix of suitable order.
- 0 or $\mathbf{0}$ may denote the number zero, a zero vector, or a zero matrix.
- $\mathbb{M}_{m \times n}$ is the vector space of all $m \times n$ matrices (with real entries).
- For a square matrix $A=\left[a_{i j}\right], M_{i j}$ is the minor of entry $a_{i j} ; C_{i j}$ is the cofactor of entry $a_{i j}$; $\operatorname{adj}(A)$ is the adjoint matrix of A.
- Give a matrix A, we denote by $\operatorname{null}(A), \operatorname{row}(A), \operatorname{col}(A)$ the null space, row space, column space of A respectively. And nullity (A) and $r(A)$ denotes the nullity and rank of A.

1. Multiple choice questions.
a). (5 points) Which of the following sets are subspaces of the given vector space? ()
(A) $\quad\left\{\left(x_{1}, x_{2}, x_{3}\right) \subseteq \mathbb{R}^{3}: x_{1}+5 x_{2}+3 x_{3}=0, x_{2}-2 x_{3}=0\right\} \subseteq \mathbb{R}^{3}$.
(B) $\quad\left\{\left(x_{1}, x_{2}, x_{3}\right) \subseteq \mathbb{R}^{3}: x_{1}>x_{2}>x_{3}\right\} \subseteq \mathbb{R}^{3}$.
(C) $\quad\left\{\left(x^{2}, x, 1\right) \subseteq \mathbb{R}^{3}: x \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}$.
(D) $\quad\left\{A \in \mathbb{M}_{3 \times 3}: A \mathbf{x}=\mathbf{0}\right\} \subseteq \mathbb{M}_{3 \times 3}$, where $\mathbf{x}=[1,0,1]^{T}$.
b). (5 points) Let $A \in \mathbb{M}_{n \times n}$ and $B \in \mathbb{M}_{n \times n}$. Determine which of the following statements are true. ()
(A) If $\operatorname{det}(A-B)=0$, then $A=B$
(B) If $A^{2}=B^{2}$, then $A=B$ or $A=-B$
(C) If $\operatorname{det}(A-B)=1$ and there is an $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=B \mathbf{x}$, then $\mathbf{x}=\mathbf{0}$
(D) If $\operatorname{det}(A-B)=1$, then $\operatorname{dim}(\operatorname{row}(A-B))=n$
c). (5 points) Let $U, W \subseteq V$ be 4 -dimensional subspaces of a 6 -dimensional vector space V, which of the following can not be the possible dimension of $U \cap W$? ()
(A) 4
(B) 3
(C) 2
(D) 1
2. Fill in the blanks.
a.) (5 points) Suppose that $\mathbf{v}_{1}=(1,1,1), \mathbf{v}_{2}=(0,1,-2 a), \mathbf{v}_{3}=(a, 0,1)$ form a basis for \mathbb{R}^{3}.

If $(-2,-7,-12)$ has coordinates $(3 a,-7-3 a, a)$ relative to this basis, then $a=$ \qquad .
b). (5 points) Suppose that A is a 3×3 matrix with $\operatorname{det}(A)=-3$, then $\operatorname{det}(-2 \operatorname{adj}(A))=$
\qquad .
c.) (5 points) Let $A=\left[a_{i j}\right]$ be a square matrix of size n with all its entries being zero except the $(i, i+1)$-th entries $a_{i, i+1}$ which equals 1 for $i=1, \cdots, n-1$. Then $r\left(A^{n-1}\right)=$
\qquad .
3. (10 points) Let $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{cc}-6 & 8 \\ 4 & 5 \\ 2 & 2\end{array}\right]$, and $C=\left[\begin{array}{cc}1 & 3 \\ 2 & 2 \\ 3 & 1\end{array}\right]$. Find a matrix X such that $A(X-B)=C$.
4. (10 points) Let A be a square matrix of size n with cofactor matrix $C=\left[C_{i j}\right]_{1 \leq i, j \leq n}$. Suppose that the sum of the entries of A in the i th row is equal to i and suppose that the determinant of A is 1 . Compute the value of $C_{11}+2 C_{21}+3 C_{31}+\cdots+n C_{n 1}$
5. Let W be the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
6 \\
-4 \\
2
\end{array}\right],\left[\begin{array}{c}
-6 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1 \\
2
\end{array}\right]
$$

a) (7 points) Compute a basis of W and the dimension of W.
b) (8 points) Let U be the set of all vectors in \mathbb{R}^{4} that are orthogonal to all vectors of W (the orthogonal complement of W). Compute a basis and the dimension of U.
6. Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are three linearly independent vectors in \mathbb{R}^{3}. Let \mathcal{S} and \mathcal{S}^{\prime} be two sets of vectors in \mathbb{R}^{3} that are given respectively by

$$
\mathcal{S}=\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{2}+\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{3}\right\} ; \quad \mathcal{S}^{\prime}=\left\{2 \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{3}, 2 \mathbf{v}_{1}+2 \mathbf{v}_{2}+2 \mathbf{v}_{3}\right\}
$$

a) (5 points) Verify that both \mathcal{S} and \mathcal{S}^{\prime} are basis of \mathbb{R}^{3}.
b) (5 points) Find the transition matrix from \mathcal{S}^{\prime} to \mathcal{S}.
c) (5 points) Suppose that $\mathbf{u} \in \mathbb{R}^{3}$ has coordinates $[\mathbf{u}]_{\mathcal{S}}=[1,2,1]^{T}$ relative to \mathcal{S}, find its coordinates $[\mathbf{u}]_{\mathcal{S}^{\prime}}$ relative to \mathcal{S}^{\prime}.
7. (10 points) Let $\mathbf{v}_{1}=(1,0,2,3), \mathbf{v}_{2}=(-3,-2,0,1), \mathbf{v}_{3}=(0,1,-3,2), \mathbf{u}=(1,0,1,0)$, $\mathbf{w}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+k_{3} \mathbf{v}_{3}$ be vectors in \mathbb{R}^{4}. Suppose that the orthogonal projections of \mathbf{w} along \mathbf{v}_{i} are the same as that of \mathbf{u} along \mathbf{v}_{i} for $i=1,2,3$, that is

$$
\operatorname{proj}_{\mathbf{v}_{i}} \mathbf{u}=\operatorname{proj}_{\mathbf{v}_{i}} \mathbf{w} \quad i=1,2,3,
$$

find the length of \mathbf{w}.
8. (10 points) Let \mathbf{u} and \mathbf{v} be two linearly independent vectors in \mathbb{R}^{3}. Viewing \mathbf{u}, \mathbf{v} as matrices of size 3×1, and compute the rank of A and B that are given by

$$
A=\mathbf{u v}^{T} \quad B=\left[\begin{array}{cc}
\mathbf{u}^{T} \mathbf{u} & \mathbf{u}^{T} \mathbf{v} \\
\mathbf{v}^{T} \mathbf{u} & \mathbf{v}^{T} \mathbf{v}
\end{array}\right]
$$

