Lecture Commutative Algebra

 

Modules over commutative rings occur almost everywhere in Mathematics. The first common examples are groups seen as modules over the ring of integers. Modules behave more richer than vector spaces, for example a module over a ring does not need to have a basis anymore.  To understand ring extensions, Dedekind rings and group rings it needs the understanding of modules.
As an application of ring theory we introduce a connection to algebraic geometry: We will finish the course in introducing Gröbner basis and the Buchberger algorithm for finding such basis.

 

Course TaskTo learn the basic notions and theorems for algebraic objects over commutative rings. The course is about

 

* modules (flat, free, projective, injective)

* tensor products of modules,

* localization

* integral ring extensions

* completions and Hensel’s Lemma

* röbner basis

 

The final mark will be computed in the following way: 50% homework and 50% final exam

 

Literature: 1) David Eisenbud, Commutative Algebra with a view towards Algebraic Geometry

2) Atiyah M.F. and Macdonald I.G. “Introduction to Commutative Algebra"

 

 

Problems to present to the tutors:

Week (20.9--): Problem 2 (Sheet 1)

Week (27.9--): Problem 2.4

Week (11.10.-) Problem 4.2 (or easier 4.3)

Week (18.10-) Problem 5.1

Week (25.10-) Problem 5.4

Week (1.11-) Talk about flatness, Problem 7.4

Week (8.11-) Problem 8.2

Week (22.11-) Problem 10.2

Week (29.11.-) Problem 11.1

Week (6.12.-) Problem 12.2

Week (20.12.-) Problem 13.4

 

Exercise sheets: Sheet 1 Sheet 2 Sheet 3 Sheet 4 Sheet 5 Sheet 6 Sheet 7

Sheet 8 (8.2 has been changed) Sheet 9 Sheet 10 Sheet 11 Sheet 12 Sheet 13

 

Lecture notes can be found here.

 

 

Shanghaitech University

IMS S506

 

Every Tuesday and Thursday 13:00-13:45 and 13:55-14:40

Start 14th of September 2021

 

Office hours: Thursdays 11:30-12:30 IMS S412

 

Print Print | Sitemap
© Daniel Skodlerack