COMMUTATIVE ALGEBRA EXERCISE SHEET 3

PROF. DANIEL SKODLERACK

Problem 1 (10 points). Compute $\operatorname{End}_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z})$.

Problem 2 (10 points, equivalent criterion for a short exact sequence to be split). Let $0 \to M_1 \xrightarrow{\alpha} M_2 \xrightarrow{\beta} M_3 \to 0$ be a short exact sequence of R-modules. Then are equivalent:

- (i) The sequence is split.
- (ii) There is an *R*-module homomorphism $t: M_2 \to M_1$ such that $t \circ \alpha = id_{M_1}$.

Problem 3 (10 points, full lattices). Let W be an *n*-dimensional Q-vector space $(n \ge 1)$ and let Λ be a finitely generated Z-submodule of W. Then are equivalent:

- (i) Λ is \mathbb{Z} -module isomorphic to \mathbb{Z}^n
- (ii) Λ contains a \mathbb{Q} -basis of W.
- (iii) Λ spans W over \mathbb{Q} .

Problem 4 (10 points, noetherian modules). Let $0 \to M_1 \xrightarrow{\alpha} M_2 \xrightarrow{\beta} M_3 \to 0$ be a short exact sequence of R-modules. Suppose that M_1 and M_3 are noetherian. Show that M_2 is noetherian.

Date: Please hand in before the lecture by **09.10.2021**. For all exercises the results need to be proven. You are allowed to use results from the Abstract Algebra course.