LINEAR ALGEBRA 1
 PROBLEM SHEET 12

PROF. DANIEL SKODLERACK

Problem 1 (30, Gram-Schmidt). Gram-Schmidt orthonormalize the column sets of the following matrices to obtain an orthonormal basis for the column space. Further provide a QR decomposition of the matrix.
(i) $\left(\begin{array}{rr}1 & -1 \\ 1 & 2 \\ 0 & 1\end{array}\right)$
(ii) $\left(\begin{array}{rrr}1 & 1 & -1 \\ 2 & -1 & 3 \\ 1 & 0 & -1\end{array}\right)$
(iii) $\left(\begin{array}{rrr}-1 & 1 & -2 \\ 2 & 2 & -2 \\ -2 & 1 & 1 \\ -1 & -2 & -1 \\ 0 & 1 & 1\end{array}\right)$

Problem $2\left(15+15^{*}\right.$, least square regression). Suppose we have observed the following data.

$$
\begin{array}{r|r|r|r|r|r|r|r}
a_{i} & 1 & -1 & 2 & 3 & -2 & -3 & 0 \\
\hline b_{i} & 1.5 & 1 & 4.5 & 8 & -2 & -4 & 0.5
\end{array}
$$

(i) Using the least square method, find the affine regression line r (of the form $r(a)=b$) for the above data.
(ii) Minimize $\|\mathrm{A} x-b\|$ over $x \in \mathbb{R}^{3}$ for the matrix A in 12.1.(iii) and $b=(1,1,1,1,1)^{T}$. Provide the minimum value and the minimum x.

Problem 3 (15, norm). Let $(\mathrm{V},\langle\rangle$,$) be an inner product space. Prove that \|\|: \mathrm{V} \rightarrow \mathbb{R}$, given by $\|v\|:=\sqrt{\langle v, v\rangle}$, is a norm on V . (See Theorem 123 for the definition of a norm.)
Problem $4(10+15$, projection). Let A be a real $m \times n$ matrix of rank n and let W be its column space. Prove that the orthogonal projection onto W satisfies

$$
\operatorname{proj}_{\mathrm{W}}(v):=\mathrm{A}\left(\mathrm{~A}^{T} \mathrm{~A}\right)^{-1} \mathrm{~A}^{T} v, v \in \mathbb{R}^{m} .
$$

Find $\operatorname{proj}_{\mathrm{W}}\left(e_{1}\right)$ for the matrices in 12.1. (Hint: There are different ways to compute the projection map, you have already the QR-decomposition.)
Problem 5 (40, Linear transformations (very easy)). (i) Let $f: \mathrm{V} \rightarrow \mathrm{W}$ and $g: \mathrm{W} \rightarrow \mathrm{U}$ be linear maps. Show that $g \circ f: \mathrm{V} \rightarrow \mathrm{U}$ is a linear transformation. (Recall $(g \circ f)(v)$ is defined to be $g(f(v))$.)
(ii) Consider $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}, f\left(x_{1}, x_{2}, x_{3}\right):=\left(2 x_{1}+3 x_{3}, 2 x_{3}-x_{2},-x_{3}-x_{2}-2 x_{1}, 4 x_{1}+3 x_{2}\right)$. Prove that f is linear. Compute the kernel and the range of f.
(iii) Consider $g: \mathrm{C}[0,1] \rightarrow \mathbb{R}^{3}, g(\varphi):=(\varphi(0), \varphi(0.5), \varphi(1))$. Prove that g is a linear transformation.
(iv) Let $\mathrm{W}:=\{\varphi \in \mathrm{C}[0,1] \mid \varphi(0)=\varphi(1)\}$. Let U be $g(\mathrm{~W})$. Prove that $\left.f\right|_{\mathrm{U}}$ is injective, i.e. that the restriction of f to the subspace U is injective. (Hint: Show that $\mathrm{U} \cap \operatorname{ker}(f)=\{0\}$.)

[^0]
[^0]: Date: Please hand in before the lecture by $3^{\text {rd }}$ of January 2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. The intermediate steps for computations need to be provided.

