LINEAR ALGEBRA 1
 PROBLEM SHEET 8

PROF. DANIEL SKODLERACK

Problem 1 (10, Span as a minimal subspace). Let W be the intersection of all subspacs of \mathbb{R}^{4} which contain the vectors $(1,0,1,1),(1,1,1,1)$ and $(1,2,1,1)$. Find a basis for W.

Problem 2 (20, Fundamental spaces of a matrix). Consider the following matrix A.

$$
\left(\begin{array}{rrrrr}
-1 & 2 & -7 & 1 & 1 \\
1 & 0 & 5 & 3 & 6 \\
2 & 1 & 6 & 5 & 1 \\
1 & 1 & -2 & -1 & -2 \\
1 & -1 & 7 & 2 & 1
\end{array}\right)
$$

Compute:
(i) a basis for the column space of A,
(ii) a basis for the row space of A ,
(iii) the null space of A ,
(iv) the rank and the nullity of A.

Problem 3 (20, base extension theorem). (i) Prove the base extension theorem, see Theorem 183.
(ii) Prove Proposition 190 in the notes: Let V be a finite dimensional vector space and $\mathrm{W}_{1}, \mathrm{~W}_{2}$ be subspaces of V. Show that

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right) .
$$

Problem $4(10+10+10$, infinite dimension). We also have the notion of linear independence for infinite sets: Let V be a vector space and T be a subset of V . We call T linearly independent if all finite subsets of T are linearly independent, see Definition 168 for the finite sets. A subset B of V is called a basis of V if it spans V and is linearly independent.
(i) Prove: V is finitely generated, i.e. there exists a finite set S which spans V , if and only if every linearly independent subset of V is finite.
(ii) Show that $\operatorname{Poly}(\mathbb{R})$ (the set of polynomial functions of \mathbb{R}) is not finitely generated.
(iii) Find a basis for

$$
\{p \in \operatorname{Poly}(\mathbb{R}) \mid \forall x \in \mathbb{R}: p(-x)=-p(x)\}
$$

the space of odd polynomial functions.

[^0]
[^0]: Date: Please hand in before the lecture by 29th of November 2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. The intermediate steps for computations need to be provided.

