Linear Algebra I Fall 2024       

 

In this lecture we introduce the basic concepts about vector spaces, linear maps and matrix transformations. It is a very important basic course because In many occasions one approaches a problem by linearization, because linear systems are easier to solve than non-linear ones. The syllabus can be found here.

Content: (Organized by chapters in the lecture notes)

  1. Linear systems 
  2. determinants
  3. Euclidean vector spaces 
  4. General vector spaces
  5. Eigenvalues and eigenvectors
  6. Inner product space
  7. Diagonalization and quadratic forms
  8. Linear transforamations

 

Literature: 

 

Book Name: Elementary Linear Algebra (Application Version), 

Howard Anton & Chris Rorres, ISBN 978-1-118-43441-3, Wiley, 2014, Edition 11

 

Course (MATH1112.04): Wednesday (数学中心204) 8:15am-9:55am and

Friday (数学中心204) 8:15am-9:55am

 

TAs (time of example class with 10 min break) 

Class 1 Guan Jingrong (Wed 6pm-7:40pm, 数学中心204),

Class 2 Zhao Yinhao (Wed 7:50pm-9:30pm, 数学中心203),

Class 3 Li Zhikai (Fr 3:55pm-5:35pm, 数学中心201)

 

Every student needs to choose one example class and to write the  number of the example class on the homework solution. 

Please attend the chosen eample class. It is very important, because the theory of the lecture will be made more accessible with helpful examples. Most of the skills for Linear Algebra will be trained in the example class. 

 

Lecture notes Chapter 1 (In Def. 51(b) it should be a_ij=0 for all i>j, e.g. a_21=0) 

Chapter 2

 

Additional material: Proof Thm25 (there are some typos)

 

 

Problem sheets Sheet 1 Sheet 2 Sheet 3 (Page 94 and 101 for Sheet 3)

The solutions have to be handed in on Wednesdays before the lecture. Late submissions do not count. 

 

Office hours: See on the left column. 

 

 

Prof. Daniel Skodllerack

 

Shanghaitech University

Institute for Mathematical Sciences,  Room S413

 

Office hours: Fr. 5:40pm-6:40pm

 

Alternatively you can write an email or a Wechat message to arrange an appointment Email address:  dskodlerack at shanghaitech.edu.cn

 

 

Print | Sitemap
© Daniel Skodlerack 上海科技大学 数学科学研究所 上海市浦东新区华夏中路393号上海科技大学创艺学院南楼(D区)室S413