Linear Algebra I Fall 2024       

 

In this lecture we introduce the basic concepts about vector spaces, linear maps and matrix transformations. It is a very important basic course because In many occasions one approaches a problem by linearization, because linear systems are easier to solve than non-linear ones. The syllabus can be found here.

Content: (Organized by chapters in the lecture notes)

  1. Linear systems 
  2. determinants
  3. Euclidean vector spaces 
  4. General vector spaces
  5. Eigenvalues and eigenvectors
  6. Inner product space
  7. Diagonalization and quadratic forms
  8. Linear transforamations

 

Literature: 

 

Book Name: Elementary Linear Algebra (Application Version), 

Howard Anton & Chris Rorres, ISBN 978-1-118-43441-3, Wiley, 2014, Edition 11

 

Course (MATH1112.04): Wednesday (教学中心204) 8:15am-9:55am and

Friday (教学中心204) 8:15am-9:55am

 

TAs (time of example class with 10 min break) 

Class 1 Guan Jingrong (Wed 6pm-7:40pm, 教学中心204,

Class 2 Zhao Yinhao (Wed 7:50pm-9:30pm, 教学中心203,

Class 3 Li Zhikai (Fr 3:55pm-5:35pm, 教学中心201

 

Every student needs to choose one example class and to write the  number of the example class on the homework solution. 

 

 

 

 

Exams: 

  1. Midterm: Nov. 20th 数学中心204 8:15am-9:55am. Please be there by 7:45am. (closed book exam, no electronic equipment, bring pen and student id)
  2. Quizzes: There will be quizzes during the course for checking skills.
  3. Final:  Jan. 15th. Wednesday (Week 18) 教学中心303, 8:00am-10:00am. Be there by 7:30 am, bring student ID, closed book, no electronic devices allowed. 

Here is the sample exam for the midterm: Mock.pdf

 

Lecture notes Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5

Diagonalization Spectral norm Chapter 6 Chapter 7 Chapter 8

transformation matrix motivation

 

Additional material: Proof Thm25 (there are some typos)

Applications for the determinant 

Spectral norm

Proof of Thm 235 (Chapter 5)

 

Problem sheets Sheet 1 Sheet 2 Sheet 3 (Page 94 and 101 for Sheet 3)

Sheet 4 Sheet 5 Sheet 6 Sheet 7 Sheet 8 Sheet 9 Sheet 10 Sheet 11

Sheet12 Sheet 13 Sheet14 Sheet15

 

Sample solution for Sheet 12

 

Reviewing problems for the final

 

The solutions have to be handed in on Wednesdays before the lecture. Late submissions do not count. 

 

Office hours: The office hours before the final exam are 

Friday (10th Jan) 11am-1pm

Monday (13th Jan) 5pm-8pm. 

You can also write an email or leave a Wechat message to arrange an appointement. My offfice is S413 in the Building of Creativity and Arts. 

 

 

 

Prof. Daniel Skodllerack

 

Shanghaitech University

Institute for Mathematical Sciences,  Room S413

 

Office hours: 

 

You can write an email or a Wechat message to arrange an appointment Email address:  dskodlerack at shanghaitech.edu.cn

 

 

Print | Sitemap
© Daniel Skodlerack 上海科技大学 数学科学研究所 上海市浦东新区华夏中路393号上海科技大学创艺学院南楼(D区)室S413