LINEAR ALGEBRA 1 (FALL 2024) PROBLEM SHEET 5

PROF. DANIEL SKODLERACK

Problem 1 (10*+10* points, Cramer's rule). Consider the following matrix A and vector b.

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}.$$

- (i) Compute the solution of Ax = b using Cramer's rule.
- (ii) Compute the adjoint matrix of A.

Problem 2 (20 points, vector space axioms). Prove Proposition 106, except of (ass +) and (ldist).

Problem 3 (6+7+7, vectors and polygons). Consider the following polygon

$$Y = (0,0) + [0,1](1,1) + [0,1](2,1) + [0,1](1,2).$$

- (i) Draw Y.
- (ii) Describe Y using inequalities.
- (iii) Compute the diameter of Y, i.e.

$$\sup\{d(P, Q)| P, Q \in Y\}.$$

At which points the diameter is realised?

Problem 4 (15 points, polytope). Consider the n-space with point space $X = \mathbb{R}^n$ and vector space $V = \mathbb{R}^n$.

- (i) Let P be a point of X and L be an affine line contained in X which does not contain P. Let Q be a point on L. Prove that for every $\delta > 0$ there is a point $Q_{\delta} \neq Q$ on L such that $d(P, Q_{\delta}) > d(P, Q)$ and $d(Q, Q_{\delta}) < \delta$.
- (ii) (n = 3) Consider the following subset:

$$Y := \{(1, 1, 1) + \lambda_1(1, 2, 2) + \lambda_2(-1, 2, 1) \mid \lambda_1, \lambda_2 \in [0, 1]\}$$

Find in Y all pairs of points P_0, Q_0 of maximal distance to each other, i.e. such that

$$d(P_0, Q_0) = \sup\{d(P, Q) \mid P, Q \in Y\}$$

. (You have to prove your result. Hint: (i) could help.)

Problem 5 (20 points, angles of a polygon)). Consider the polygon with the vertexes

$$A=(1,2),\ B=(2,3),\ C=(\frac{5}{2},\frac{6-\sqrt{3}}{2}),\ D=(\frac{3}{2},\frac{6-\sqrt{3}}{2})$$

in that order. Compute the angles at the vertexes,

$$\angle(D, A, B), \angle(A, B, C), \angle(B, C, D), \angle(C, D, A),$$

1

Date: Please hand in before the lecture by **30th of October 2024**. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference. * questions give extra points.