Musterlösung zur Serie 11 Algebra und Zahlentheorie und ihre Didaktik

Dr. Daniel Skodlerack

16. Juli 2017

Sie dürfen in den ersten beiden Aufgaben Ihre Analysiskenntnisse über Folgen, Cauchyfolgen und Grenzwertberechnungen verwenden.

Aufgabe 1. $(5^*+5^* \text{ Punkte})(\text{Dedekindsche Schnitte})$ Betrachten Sie die Konstruktion des Körpers der reellen Zahlen \mathbb{R} aus der Vorlesung als Körper $\text{CF}(\mathbb{Q})/\text{NF}(\mathbb{Q})$, wobei $\text{CF}(\mathbb{Q})$ der Ring der Cauchyfolgen und $\text{NF}(\mathbb{Q})$ das Ideal der Nullfolgen in \mathbb{Q} ist. In der Vorlesung hatten wir folgende Abbildung angegeben:

$$\Phi: \mathbb{R} \to \mathrm{Ded}(\mathbb{Q}), \ \Phi(r) := (A_r, B_r),$$

wobei A_r und B_r für $r = [(a_n)]_{NF(\mathbb{O})}$ wie folgt definiert wurden:

$$A_r := \{ x \in \mathbb{Q} | \exists \epsilon \in \mathbb{Q}^{>0} : \exists n_0 \in \mathbb{N} : \forall_{n \ge n_0} : x < a_n - \epsilon \}, \ B_r := \mathbb{Q} \setminus A_r.$$

- 1. Zeigen Sie, dass Φ wohldefiniert ist, d.h. $\Phi(r)$ nicht vom Repräsentanten $(a_n)_{\mathbb{N}}$ abhängt und (A_r, B_r) ein Dedekindscher Schnitt ist.
- 2. Zeigen Sie, dass Φ additiv ist.

Lösung:

1. Es seien $a=(a_n)_{\mathbb{N}}$ und $b=(b_n)_{\mathbb{N}}$ zwei Cauchyfolgen in \mathbb{Q} deren Differenz eine Nullfolge ist und wir bezeichnen die entsprechenden Mengen A_r mit A_a und A_b . Wir müssen $A_a=A_b$ zeigen. Zu einem Element x in A_a gibt es eine positive rationale Zahl ϵ und eine natürliche Zahl n_0 , so dass $x < a_n - \frac{3\epsilon}{2}$ für alle $n \ge n_0$ gilt, und da a-b eine Nullfolge ist, kann man n_0 hinreichend groß wählen, so dass für $n \ge n_0$ die Ungleichung $|a_n-b_n|<\frac{\epsilon}{2}$ gilt. Mit Hilfe der Dreiecksungleichung erhalten wir $x < b_n - \epsilon$ für alle $n \ge n_0$, und x ist ein Element von A_b . Aus dem Grund der Symmetrie erhalten wir $A_a=A_b$.

Es sei $[(a_n)_{\mathbb{N}}] = r$ eine reelle Zahl. Der Beweis, dass (A_r, B_r) ein dedekindscher Schnitt ist, unterteilt sich in mehrere Punkte:

- Cauchyfolgen sind beschränkt, also auch $(a_n)_{\mathbb{N}}$, etwa $B \geq |a_n|$ für alle $n \in \mathbb{N}$, und deshalb liegt -B-1 in A_r und B in B_r .
- Es seien $x \in A_r$ und $y \in B_r$ zwei Elemente. Es existiert ein $\epsilon > 0$, so dass $x < a_n \epsilon$ für fast alle n. Das Element y aus B_r ist kein Element von A_r und ist größer gleich $a_n \epsilon$ für unendlich viele n. Es sei n_1 eines dieser n und hinreichend groß. Dann gilt $x < a_n \epsilon \le y$.
- A_r besitzt kein Maximum, da aus $x < a_n \epsilon$ die Ungleichung $x + \frac{\epsilon}{2} < a_n \frac{\epsilon}{2}$ folgt, d.h. dass aus $x \in A_r$ die Existenz eines positiven rationalen δ folgt, so dass $x + \delta$ ein Element von A_r ist. Damit ist der letzte Punkt gezeigt, um zu schließen, dass (A_r, B_r) ein dedekindscher Schnitt ist.
- 2. Es seien $r=[(a_n)_{\mathbb{N}}]$ und $s=[(b_n)_{\mathbb{N}}]$ reelle Zahlen. Wir müssen $A_{r+s}=A_r+A_s$ zeigen. Es gilt $A_r+A_s\subseteq A_{r+s}$, denn für $x,y\in\mathbb{Q}$ mit positiven rationalen Zahlen ϵ und δ , die $x\in A_r$ bzw. $y\in A_s$ bezeugen, erhalten wir $x+y\in A_{r+s}$, bezeugt von $\epsilon+\delta$. Es sei nun z ein Element von A_{r+s} bezeugt von ϵ . Wir wählen eine natürliche Zahl m, so dass $\frac{1}{2^m}$ kleiner als $\frac{\epsilon}{3}$ ist. Es sei $\frac{u}{2^m}$ das Maximum von $(\frac{1}{2^m}\mathbb{Z})\cap A_r$. Dann gilt

$$\frac{u}{2^m} \ge a_n - \frac{\epsilon}{3},$$

für unendlich viele n, und da $(a_n)_{\mathbb{N}}$ eine Cauchyfolge ist, gilt $\frac{u}{2^m} \geq a_n - \frac{2\epsilon}{3}$ für fast alle n. Also gilt

$$z - \frac{u}{2^m} < a_n + b_n - \epsilon - \left(a_n - \frac{2\epsilon}{3}\right) = b_n - \frac{\epsilon}{3}$$

für fast alle natürlichen Zahlen. Also ist z ein Element von $A_r + A_s$.

Aufgabe 2. (5*+5* Punkte)(Kettenbrüche) Betrachten Sie die Folge:

$$a_n := b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{\cdots}}}, \ b_n := \begin{cases} 1 & \text{falls } 2 | n \\ 2 & \text{falls } 2 \not | n \end{cases}, \ n \in \mathbb{N}_0.$$

- 1. Zeigen Sie, dass $(a_n)_{\mathbb{N}_0}$ eine Cauchyfolge ist. Hinweis: $a_{n+2} = 1 + \frac{1}{2 + \frac{1}{a_n}}$, und betrachten Sie $a_{n+2} a_{n+1}$.
- 2. Berechnen Sie den Grenzwert von $(a_n)_{\mathbb{N}_0}$ in \mathbb{R} .

Bemerkung: Es sei erwähnt, dass $[(a_n)_{\mathbb{N}}]_{\mathrm{NF}(\mathbb{Q})} \in \mathbb{R} = \mathrm{CF}(\mathbb{Q})/\mathrm{NF}(\mathbb{Q})$ der Grenzwert von $(a_n)_{\mathbb{N}_0}$ ist. Dieser soll nun als Term mit Hilfe von rationalen Zahlen und Quadratwurzeln angegeben werden.

Lösung:

1. Es folgt $|a_{n+3}-a_{n+2}| \leq \frac{|a_n-a_{n+1}|}{9}$ nach zweifacher Verwendung der Gleichung aus dem Hinweis, und wir erhalten also für eine natürliche Zahl n=2k+r mit $r\in\mathbb{N}^{\leq 1}$ induktiv:

$$|a_{n+1} - a_n| \le \begin{cases} \frac{1}{9^k} |a_1 - a_0| & \text{falls } r = 0\\ \frac{1}{9^k} |a_2 - a_1| & \text{falls } r = 1. \end{cases}$$

Es sei K das Maximum von $|a_1 - a_0|$ und $|a_2 - a_1|$. Wir erhalten für natürliche Zahlen $m > n \ge 2l$:

$$|a_m - a_n| \leq \sum_{i=n}^{m-1} |a_{i+1} - a_i|$$

$$\leq \sum_{i=0}^{\infty} |a_{n+2i+1} - a_{n+2i}| + \sum_{i=0}^{\infty} |a_{n+2i+2} - a_{n+2i+1}|$$

$$\leq 2K \sum_{i=0}^{\infty} \frac{1}{9^{k+i}}$$

$$\leq 2K \frac{1}{9^l} \frac{9}{8},$$

wobei k der Ganzteil von $\frac{n}{2}$ sein soll. Folglich ist $(a_n)_{\mathbb{N}}$ eine Cauchyfolge.

2. Nach dem ersten Teil der Aufgabe und der Vollständigkeit von \mathbb{R} ist $(a_n)_{\mathbb{N}}$ in \mathbb{R} konvergent. Es sei α ihr Grenzwert. Wir erhalten aus der Gleichung vom Hinweis durch Erweitern und Multiplizieren mit den positiven Zahlen a_n und $2a_n + 1$ die Gleichung

$$a_{n+2}(2a_n+1) = (2a_n+1) + a_n.$$

Wir gehen in ihr zum Grenzwert über und erhalten

$$2\alpha^2 + \alpha = 3\alpha + 1,$$

und äquivalent

$$\alpha^2 - \alpha - \frac{1}{2} = 0.$$

Da jedes a_n größer gleich 1 ist, muss α auch größer gleich 1 sein, und wir erhalten mit der p-q-Formel:

$$\alpha = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{1}{2}} = \frac{1 + \sqrt{3}}{2}.$$

Aufgabe 3. (5*+5* Punkte)(quadratische Reste)

- 1. Finden Sie alle Primzahlen kleiner als 20, die quadratischer Rest modulo 101 sind.
- 2. Es sei n eine natürliche Zahl. Zeigen Sie, dass die Gleichung $101^nX^3 + 7X^2 = 33Y^2$ keine ganzzahlige Lösung ungleich (0,0) besitzt.

Hinweis: Führen Sie den Beweis auf den Fall zurück, bei dem weder x noch y durch 101 teilbar sind. Dabei kann es passieren, dass man zu einer Gleichung mit "größerem n" übergeht.

Lösung:

- Die Primzahl 2 ist nach dem zweiten Ergänzungssatz kein quadratischer Rest mod 101, da keine der Zahlen 101 ± 1 durch 8 teilbar ist.
 - Zur Hilfe geben wir noch an, dass nach dem ersten Ergänzungssatz -1 ein quadratischer Rest mod 101 ist, da $101 \in [1]_4$.

Nach dem quadratischen Reziprozitätsgesetz müssen wir für die ungeraden Primzahlen p ungleich 101 nur prüfen, ob 101 ein quadratischer Rest mod p ist, da $101 \equiv 1 \mod 4$.

- $101 \equiv_3 2$, also ist 101 kein quadratischer Rest mod 3 und somit 3 kein quadratischer Rest mod 101.
- $101 \equiv_5 1$, also ist 5 ein quadratischer Rest mod 101.
- $7 \equiv_{101} 108 \equiv_{101} 9 \cdot 4 \cdot 3$, und demnach kann 7 kein quadratischer Rest mod 101 sein, da 3 kein quadratischer Rest mod 101 ist.
- $11 \equiv_{101} -90 \equiv_{101} 9 \cdot (-1) \cdot 2 \cdot 5$, und 11 ist kein quadratischer Rest mod 101, da das entsprechende Legendre-Symbol den Wert $1 \cdot (-1) \cdot 1$ also -1 hat.
- 13 ≡₁₀₁ -88 ≡₁₀₁ (-1) · 4 · 2 · 11, und die Berechnung des Legendre-Symbols ergibt somit den Wert 1. Die Zahl 13 ist also ein quadratischer Rest mod 101.
- $17 \equiv_{101} -84 \equiv_{101} (-1) \cdot 4 \cdot 3 \cdot 7$, und das Legendre-Symbol hat den Wert 1.
- 19 \equiv_{101} 120 \equiv_{101} 4 · 2 · 3 · 5, und 19 ist ein quadratischer Rest mod 101, da nach dem Vorangehenden das Lengendre-Symbol den Wert (-1)(-1) · 1 also 1 hat.

Wir fassen zusammen. Die Primzahlen kleiner als 20, die quadratischer Rest mod 101 sind, sind genau 5, 13, 17 und 19.

2. Es sei L die Menge aller Tripel (n,x,y), so dass (x,y) ein Paar ganzer Zahlen ungleich (0,0) ist, das die obige Gleichung für n löst. Angenommen die Menge L ist nicht leer. Wir wählen unter allen Elementen von L ein solches Tripel (n,x,y), bei dem die Summe |x|+|y| minimal ist. Aus der Primzahleigenschaft von 101 und der Gleichung folgt, dass 101 genau dann ein Teiler von x ist, wenn sie y teilt. Die Zahl 101 kann aber nicht beide teilen, da sonst $(n+1,\frac{x}{101},\frac{y}{101})$ eine Lösung mit kleinerem Betrag für die letzten beiden Koordinaten wäre. Also teilt 101 weder x noch y. Nun, $7x^2$ ist nach dem ersten Teil der Aufgabe kein quadratischer Rest mod 101, da 7 keiner ist. Ein analoges Argument zeigt, dass $33y^2 = 3 \cdot 11 \cdot y^2$ ein quadratischer Rest mod 101 sein muss, da 3 und 11 keine solchen sind. Das ergibt aber einen Widerspruch, da $7x^2$ und $33y^2$ mod 101 kongruent zueinander sind.