Exercise sheet 11 Lecture p-adic Representation Theory

Dr. Daniel Skodlerack

Please prepare by **14.07.2017**

On this problem sheet F denotes a non-archimedean local field. We write G for $\mathrm{GL}_2(F)$ and A for its Lie algebra.

Aufgabe 1. (10 points) Let $\psi: F \to \mathbb{C}^{\times}$ be a non-trivial smooth additive character of F and a be an element of F^{\times} . Recall that we denote by μ_{ψ} and μ_{ψ}^{A} the self-dual Haar measure relative to ψ on F and A, respectively. Prove the following equalities:

- 1. $\mu_{a\psi} = ||a||^{\frac{1}{2}} \mu_{\psi}$
- 2. $\mu_{a\psi}^A = ||a||^2 \mu_{\psi}^A$.

Aufgabe 2. (10 points) Let χ be a smooth character of F^{\times} , ψ be a non-trivial smooth character of F, and we consider the map $\lambda_1: C_c^{\infty}(F) \to \mathbb{C}(X)$ defined via:

$$\lambda_1(\Phi) := Z(\hat{\Phi}, \tilde{\chi}, \frac{1}{qX}),$$

where we take the Fourier transform with respect to μ_{ψ} . Prove that λ_1 satisfies:

$$\lambda_1(a\Phi) = \chi(a)X^{\nu_F(a)}\lambda_1(\Phi),$$

for all test functions $\Phi \in C_c^{\infty}(F)$ and $a \in F^{\times}$.

Aufgabe 3. (10 points) Let \mathfrak{a} be an hereditary order of A. Let θ be an irreducible smooth representation of $U_{\mathfrak{a}}$ contained in an irreducible cuspidal representation (π, V) of $\mathrm{GL}_2(F)$. Consider the matrix coefficient f_0 of π for a pair $(\tilde{v}, v) \in \tilde{V}^{\tilde{\theta}} \times V^{\theta}$. Show the following identity for all $\Phi \in C_c^{\infty}(A)$:

$$Z(\Phi, f_0, X) = Z(e_\theta * \Phi * e_\theta, f_0, X).$$

Aufgabe 4. (10 Punkte) Calculate the local constant for an unramified character of F^{\times} using the corresponding definitions.