Probeklausur – Algebra/Zahlentheorie und ihre Didaktik (Fachwissenschaftlicher Teil), SoSe 2017

Konvention: Ring beinhaltet die Kommutativität. Ein unitärer Ring beinhaltet immer die Forderung $0 \neq 1$.

Aufgabe 1

- 1. Formulieren Sie die Peano-Axiome.
- 2. Zeigen Sie mit Hilfe der Peano-Axiome, dass für alle Elemente $n, m \in \mathbb{N}_0$ aus nm = 1 folgt, dass n und m gleich eins sind.
- 3. Zeigen Sie die folgende Aussage für alle $n \in \mathbb{N}$:

$$\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1.$$

Aufgabe 2

1. Bestimmen Sie die Lösungsmenge des folgenden Systems von Kongruenzen:

$$x \equiv_3 1$$
, $x \equiv_5 3$, $x \equiv_{11} 2$.

2. Berechnen Sie eine ganze Zahl x, für die $95x \equiv 38 \mod 209$ gilt.

Aufgabe 3

1. Es seien $(G_1,\cdot),(G_2,\circ)$ Gruppen. Wir definieren

$$(g_1, g_2) \star (h_1, h_2) = (g_1 \cdot h_1, g_2 \circ h_2) \quad \forall (g_1, g_2), (h_1, h_2) \in G_1 \times G_2.$$

Zeigen Sie, dass $(G_1 \times G_2, \star)$ wieder eine Gruppe ist. Man bezeichnet diese Gruppe mit $(G_1, \cdot) \times (G_2, \circ)$.

2. Finden Sie eine Untergruppe $H \leq (\mathbb{Z}/4\mathbb{Z}, +) \times (\mathbb{Z}/4\mathbb{Z}, +)$, die kein Produkt von Untergruppen ist, d.h. für die keine Untergruppen $H_1 \leq (\mathbb{Z}/4\mathbb{Z}, +)$ und $H_2 \leq (\mathbb{Z}/4\mathbb{Z}, +)$ existieren, so dass $H = (H_1, +) \times (H_2, +)$.

Aufgabe 4

- 1. Definieren Sie den Begriff der zyklischen Gruppe. (Sie dürfen dabei den Begriff der Gruppe als bekannt voraussetzen.)
- 2. Nennen Sie je ein Beispiel für eine zyklische Gruppe und eine nicht-zyklische Gruppe (ohne Beweis).
- 3. Es sei $G = \langle g \rangle$ zyklisch. Zeigen Sie ord(G) = ord(g).

Aufgabe 5

1. Wir betrachten auf $\mathbb{Z} \times \mathbb{Z}$ die Verknüpfungen

$$\begin{array}{ccccc} \oplus \colon & (\mathbb{Z} \times \mathbb{Z}) \times (\mathbb{Z} \times \mathbb{Z}) & \longrightarrow & \mathbb{Z} \times \mathbb{Z} & \text{und} \\ & & (z_1, z_2), (w_1, w_2) & \longmapsto & (z_1 + w_1, z_2 + w_2) \\ \otimes \colon & (\mathbb{Z} \times \mathbb{Z}) \times (\mathbb{Z} \times \mathbb{Z}) & \longrightarrow & \mathbb{Z} \times \mathbb{Z} \\ & & & (z_1, z_2), (w_1, w_2) & \longmapsto & (z_1 \cdot w_1, w_2 + z_2) \end{array}$$

Prüfen Sie, ob $(\mathbb{Z}\times\mathbb{Z},\oplus,\otimes)$ ein Ring ist.

- 2. Es seien $(R, +_R, \cdot_R)$ und $(S, +_S, \cdot_S)$ unitäre Ringe und $\phi \colon R \to S$ ein unitärer Ringhomomorphismus. Zeigen Sie:
 - a) Ist $I \subset S$ ein Ideal, dann ist auch $\phi^{-1}(I) \subset R$ ein Ideal.
 - b) Ist $J \subset S$ ein Primideal, dann ist auch $\phi^{-1}(J) \subset R$ ein Primideal.
 - c) Finden Sie ein Beispiel für S,R und ϕ und ein Ideal I von R, so dass $\phi(I)$ kein Ideal von S ist.

Aufgabe 6

Entscheiden Sie, ob die folgenden Kongruenzen lösbar sind:

- $1. \ X^2 \equiv 3333 \mod 83$
- $2. 5X^2 \equiv 21 \mod 29$
- 3. $X^2 + 6X \equiv 96 \mod{131}$.