Exercise sheet 9 Lecture p-adic Representation Theory ## Dr. Daniel Skodlerack ## Please prepare by **30.06.2017** On this problem sheet F denotes a non-archimedean local field. We denote $G := GL_2(F)$. **Aufgabe 1.** (10 points) Show that for every cuspidal irreducible complex representation π of G there is a cuspidal type $(\mathfrak{a}, J, \Lambda)$, such that π is isomorphic to $\operatorname{Ind}_J^G \Lambda$. Aufgabe 2. (10 points) Let π be an irreducible smooth complex representation. Show that π contains an essentially scalar stratum if and only if there is a smooth character χ of F^{\times} such that $l(\chi \pi) < l(\pi)$. **Aufgabe 3.** (10 points) Let $(\mathfrak{a}, \Lambda, J)$ be a cuspidal type which contains a simple stratum $(\mathfrak{a}, n, \alpha)$. Suppose that n is odd. Show that Λ is one-dimensional. Hint: Put $E:=F[\alpha]$. The group J_{α} is by definition $E^{\times}U_{\mathfrak{a}}^{\lfloor\frac{n+1}{2}\rfloor}$ which is equal to $E^{\times}U_{\mathfrak{a}}^{\lfloor\frac{n}{2}\rfloor+1}$, because n is odd. Thus we only need to consider ψ_{α} , which is defined on $U_{\mathfrak{a}}^{\lfloor\frac{n}{2}\rfloor+1}$, and a character on E^{\times} . Remark: If n is even, then J_{α} is bigger than $E^{\times}U_{\mathfrak{a}}^{\lfloor\frac{n}{2}\rfloor+1}$, because $\lfloor\frac{n}{2}\rfloor+1$ is greater than $\lfloor\frac{n+1}{2}\rfloor$, and Λ is not a character anymore. **Aufgabe 4.** (10 points) Let W_F be the Weil group of F, and let σ be a smooth finite dimensional representation of \mathcal{W}_F . Show that for every Frobenius element Ψ of \mathcal{W}_F there is an integer a such that $\sigma(\Psi^a)$ commutes with all elements of $\sigma(\mathcal{I}_F)$ where \mathcal{I}_F is the inertia group of F.