Exercise sheet 8 Lecture p-adic Representation Theory

Dr. Daniel Skodlerack

Please prepare by **23.06.2017**

On this problem sheet F denotes a non-archimedean local field. We further fix an additive character of F which is trivial on \mathfrak{p}_F and non-trivial on o_F . We denote $G := \mathrm{GL}_n(F)$ and $A := \mathrm{M}_n(F)$ and we recall the definition of $\psi_A(a)$ as $\psi_F \circ \mathrm{tr}_{A|F}(x)$.

Aufgabe 1. (5+5+5) We define the dual of a (full) o_F -lattice M of $M_n(F)$ via

$$M^* := \{ a \in M_n(F) | \forall_{x \in M} : \psi_A(ax) = 1 \}$$

- 1. Show that M^* is again a full o_F -lattice.
- 2. Show that two o_F -lattices M_1 and M_2 of $M_n(F)$ satisfy $(M_1 + M_2)^* = M_1^* \cap M_2^*$ and $(M_1^*)^* = M_1$.
- 3. Let $\mathfrak a$ be a hereditary order of G. Prove the equality:

$$(\mathfrak{p}_{\mathfrak{a}}^m)^* = \mathfrak{p}_{\mathfrak{a}}^{1-m}.$$

Aufgabe 2. (5+5+5) Suppose n=2 and let \mathfrak{m} be the standard maximal order of G. Consider the strata

$$\Delta:=(\mathfrak{m},1,\alpha)\ \Delta':=(\mathfrak{m},1,\alpha')\,,\ \alpha:=\begin{pmatrix}\pi_F^{-1}&0\\0&\pi_F^{-1}\end{pmatrix},\ \alpha':=\begin{pmatrix}\pi_F^{-1}&\pi_F^{-1}\\0&\pi_F^{-1}\end{pmatrix}.$$

- 1. Show that Δ and Δ' intertwine by some element of G.
- 2. Show that Δ and Δ' are not conjugate by any element of G, i.e. by definition that there is no element g of G such that $g.\Delta := (g\mathfrak{m}g^{-1}, 1, g.\alpha g^{-1})$ is equivalent to Δ' .
- 3. Prove that there is no simple stratum of A which is equivalent to Δ' .

Aufgabe 3. (5+10) We consider the case n=2. Let π be an irreducible smooth representations of G and χ be a smooth character of F^{\times} .

- 1. Prove $l(\chi \pi) \leq \max\{l(\chi), l(\pi)\}.$
- 2. Prove $l(\chi \pi) = \max\{l(\chi), l(\pi)\}$, if χ and π have different levels.