

Dr. Daniel Skodlerack

December 23, 2018

Aufgabe. 5.2(Iwahori decomposition and Haar measure, [BH, Exercise 7.6])

- 1. Let C be the set $\bar{N}TN$. Show that C is open and dense in G and that $\bar{N}\times T\times N\to C$, $(\bar{n},t,n)\mapsto \bar{n}tn$, is a homeomorphism.
- 2. Let dg be a Haar measure on G. Show that there are Haar measures $dn, d\bar{n}$ and dt on N, \bar{N} and T, respectively, such that for all $f \in C_c^{\infty}(G)$

$$\int_{G} f dg = \int_{\bar{N}} \int_{T} \int_{N} \delta_{B}^{-1}(t) f(\bar{n}tn) dn dt d\bar{n}. \tag{1}$$

Note that we take as a definition of the modular character of B: $\delta_B(b) = (b^{-1}Jb:J)$ for any compact open subgroup J of N and any $b \in B$. In particular this gives $\int_B f(bb')db = \delta_B(b')^{-1} \int_B f(b)db$. This is the way Bushnell and Henniart choose the modular character.

Solution:

1. At first we obtain that C is open, because $C = G \setminus wB$ where w is the anti-diagonal matrix with entries 1 in the anti-diagonal. For the homeomorphism property it is enough to show that all products $\bar{N}_i T_i t N_i$ are open in G for every $t \in T$. Here N_i is the intersection of N with $K_i := 1 + M_2(\mathfrak{p}_F)$, $i \geq 1$, similar for T_i and \bar{N}_i . In fact the set $\bar{N}_i T_i t N_i$ is a union of sets of the form $\bar{n}_j (K_i \cap t K_i t^{-1}) n_j t$ and thus it is open in $\bar{N}TN$. For the density: It is enough to show that w is in the closure of C. But this is the case, because

$$\begin{pmatrix} 1 & 0 \\ \pi_F^{-i} & 1 \end{pmatrix} \begin{pmatrix} \pi_F^i & 1 \\ 0 & -\pi_F^{-i} + \pi_F^i \end{pmatrix} = \begin{pmatrix} \pi_F^i & 1 \\ 1 & \pi_F^i \end{pmatrix}.$$

2. We write μ for the Haar measure dg on G. Recall that μ is a non-trivial G-left invariant Radon measure on G. Let $\tilde{\mu}$ be the Radon measure on $G \setminus C$ which is the push forward of the product of measure $d\bar{n} \times \delta_B^{-1}(t)dt \times dn$, where $d\bar{n}, dt, dn$ are chosen Haar measures. Then by Fubini (Note that the measures are locally finite, so we can apply Fubini) we have

$$\int_{G \backslash C} f d\tilde{\mu} = \int_{\bar{N}} \int_{T} \int_{N} \delta_{B}^{-1}(t) f(\bar{n}tn) dn dt d\bar{n}.$$

for every $\tilde{\mu}$ -integrable function of $G \setminus C$. We have to show:

- (a) We can choose $d\bar{n}, dt, dn$ such that μ and $\tilde{\mu}$ agree on the Borel σ -algebra of $G \setminus C$.
- (b) $\mu(B) = 0, B = TN.$

At first we choose $d\bar{n}, dt, dn$ such that \bar{N}_1, T_1, N_1 have measure 1. And we can assume without loss of generality that K_1 has measure 1. The measures μ and $\tilde{\mu}$ are Radon measures and $G \setminus C$ has a countable base. So the measures are outer regular (see Elstrodt, Maß- und Intergrationstheorie, Chapter 14, Satz 1.9 and Definition 1.7) and it is enough to show that the measures agree in enough copen (compact open) sets. Both measures agree on K_1 and by the bijection

$$K_1/K_i \to \bar{N}_1/\bar{N}_i \times T/T_i \times N_1/N_i$$

which maps $\bar{n}tnK_i$ to $(\bar{n}\bar{N}_i, tT_i, nN_i)$ (Here you need the normality of K_i in K_1 and the Iwahori decomposition.) we obtain that both measures also agree on K_i for all positive integers i. Take $t \in T$. Then K_i is a disjoint union of sets of the form $\bar{n}(K_i \cap tK_it^{-1})n$ - Further μ and $\tilde{\mu}$ are \bar{N} -left and N-right invariant (G is unimodular.). So μ and $\tilde{\mu}$ agree on $K_i \cap tK_it^{-1}$. Suppose we have shown that $\tilde{\mu}$ is T-right invariant, then for \bar{n}, t, n and i we have

$$\tilde{\mu}(\bar{n}\bar{N}_iT_itN_in) = \tilde{\mu}(\bar{N}_iT_itN_it^{-1}).$$

which is the disjoint union of sets of the form $\bar{n}_j(K_i \cap tK_i t^{-1})n_j$, and we know already that both measures agree on the latter. So they agree on $\bar{n}\bar{N}_iT_itN_in$ and a combinatoric argument shows that both measures agree on a collection of copen sets which have the property that every open subset of $G \setminus C$ is an increasing countable union of a family of them. So the measures agree on the Borel σ -algebra of $G \setminus C$ by outer regularity. The T-right invariance of $\tilde{\mu}$ is obtained, by Fubini, noting that δ_B , $\delta_B(x) := (x^{-1}N_1x : N_1)$, $x \in B$, is the modular character of any left Haar measure of B. (Note dtdn defines is a non-trivial B-left-invariant Radon measure on B, i.e. a left Haar measure, and thus $dtdn\delta_B^{-1}$ is a right Haar measure on B.)

Now we only need to show that B and therefore wB is a zero set:

$$\mu(B) = \int_{\{1_{\bar{N}}\}} \int_{T} \int_{N} \delta_{B}(t)^{-1} dn dt d\bar{n} = 0$$

because $\{1_{\bar{N}}\}$ is a zero set of \bar{N} .

Aufgabe. 6.2(Mackey's irreducibility criteria) Let G be a second countable locally profinite group and H be an open subgroup of G, such that for all $g \in G$ the space $(H \cap gHg^{-1})\backslash H$ is finite. (For example the condition on H is satisfied if H is open contains the center Z of G and is compact mod Z.)

Then the following assertions are equivalent for a smooth irreducible representation (σ, W) of H.

- 1. c-Ind $_{H}^{G}\sigma$ is irreducible.
- 2. The intertwining of σ in G is equal to H.
- 3. $\operatorname{End}_G(\operatorname{c-Ind}_H^G \sigma) \cong \mathbb{C}$.

Solution:

- 1. \Rightarrow 3.: If c-Ind $_H^G \sigma$ is irreducible then $\operatorname{End}_G(\operatorname{c-Ind}_H^G \sigma) \cong \mathbb{C}$ by Schur.
- 3. \Leftrightarrow 2.: We use the following Mackey-decomposition (Proposition 48):

$$\operatorname{Res}_H^G(\operatorname{c-Ind}_H^G\sigma) \cong \bigoplus_{H \backslash G/H} \operatorname{c-Ind}_{H \cap {}^g H}^H \operatorname{Res}_{H \cap {}^g H}^{g} \sigma,$$

and the second Frobenius reciprocity, as follows:

$$\begin{split} \operatorname{End}_{G}(\operatorname{c-Ind}_{H}^{G}\sigma) & \cong \operatorname{Hom}_{H}(\sigma, \operatorname{Res}_{H}^{G}\operatorname{c-Ind}_{H}^{G}\sigma) \\ & \cong \operatorname{Hom}_{H}(\sigma, \bigoplus_{H \backslash G/H} \operatorname{c-Ind}_{H \cap {}^{g}H}^{H}\operatorname{Res}_{H \cap {}^{g}H}^{g}\sigma) \\ & \cong \bigoplus_{H \backslash G/H} \operatorname{Hom}_{H}(\sigma, \operatorname{c-Ind}_{H \cap {}^{g}H}^{H}\operatorname{Res}_{H \cap {}^{g}H}^{g}\sigma), \\ & \cong \bigoplus_{H \backslash G/H} \operatorname{Hom}_{H}(\sigma, \operatorname{Ind}_{H \cap {}^{g}H}^{H}\operatorname{Res}_{H \cap {}^{g}H}^{g}\sigma), \\ & \cong \bigoplus_{H \backslash G/H} \operatorname{Hom}_{H \cap {}^{g}H}(\operatorname{Res}_{H \cap {}^{g}H}^{H}\sigma, \operatorname{Res}_{H \cap {}^{g}H}^{g}\sigma), \end{split}$$

where the 3rd isomorphism exists, since σ is of finite type, because it is irreducible, and the replacement from compact induction to induction in the 4th line was possible, since $(H \cap {}^g H) \setminus H$ is finite. Thus $\operatorname{End}_G(\operatorname{c-Ind}_H^G \sigma) \cong \mathbb{C}$ if and only if there is only one non-zero summend on the right side. The summand for the double coset H is one dimensional by Schur's Lemma, and the summand for the double coset HgH is non-zero if and only if g intertwines σ .

• 3. \Rightarrow 1.: Suppose that c-Ind $_H^G \sigma$ is not irreducible, say c-Ind $_H^G \sigma$ has a proper subrepresentation τ . Let f_0 be a non-zero element of τ . The H-representation $\delta := \mathcal{H}(H)f_0$ is the subrepresentation of $\operatorname{Res}_H^G \tau$ generated by f_0 . The finiteness condition implies that there are finitely many right cosets of H, say Hg_i , $1 \le i \le l$, such that every element of δ has support in $\bigcup_i Hg_i$. ($H \setminus HgH$ is finite because $(H \cap g^{-1}Hg) \setminus H$ is finite.) We can suppose without generality that H is in the support of f_0 , otherwise replace f_0 by a G-conjugate of f_0 .

Claim: The action of H on δ is semisimple. By Lemma 1 below it is enough to show that $\operatorname{Res}_{H'}^H \delta$ is semisimple for $H' := \bigcap_i g_i^{-1} H g_i$, because the index of H' in H is finite. Consider $g = g_i$ for some i, and let $\operatorname{Ind}_{Hg}\sigma$ be the set of elements of $\operatorname{c-Ind}_H^G\sigma$ with support in Hg. We consider $\operatorname{Ind}_{Hg}\sigma$ as a subrepresentation of $\operatorname{Res}_{H'}^G\operatorname{c-Ind}_H^G\sigma$. The H'-representation $\operatorname{Ind}_{Hg}\sigma$ is isomorphic to $\operatorname{Res}_{H'}^{g^{-1}Hg}(\sigma^g)$ by the map which sends f to f(g). The representation σ^g is irreducible and thus semisimple. Thus $\operatorname{Res}_{H'}^{g^{-1}Hg}\sigma^g$ is semisimple by Lemma 1 and thus $\operatorname{Ind}_{Hg}\sigma$ is semisimple.

We let g vary and we see that $\operatorname{Res}_{H'}^H \delta$ is semisimple as a subrepresentation of $\bigoplus_i \operatorname{Ind}_{Hg_i} \sigma$. Thus by Lemma 1 the representation δ is semisimple.

Claim: σ is a subpresentation of δ . This follows easily because the image of the H-morphism

$$f \in \delta \mapsto f(1)$$

is non-zero, because H is a subset of the support of f_0 . Thus this morphism is surjective by the irreducibility of σ , and the semisimplicity of δ ensures that this morphism has a right-inverse.

Now we can conclude the contradiction, because by the last claim and the second Frobenius reciprocity it follows that there is a non-zero morphism of G-representations from c-Ind $_H^G \sigma$ to τ , which contradicts $\operatorname{End}(\operatorname{c-Ind}_H^G \sigma) = \mathbb{C}$.

Lemma 1 (Lemma 2.7, GL(2), Bushnell Henniart). Let G be a locally profinite group, H be an open subgroup of finite index in G and σ be a smooth representation of G. Then σ is semisimple if and only if $\operatorname{Res}_H^G \sigma$ is semisimple.

This Lemma is a nice exercise.

Aufgabe. 6.4 Find the cuspidal support of the Steinberg representation of $GL_2(F)$, i.e. of the infinite dimensional irreducible quotient of $Ind_B^{GL_2(F)} \mathbb{1}$, where B is the standard (upper) Borel subgroup.

Solution: The representation $\pi := \operatorname{Res}_B^G \operatorname{Ind}_B^G \mathbb{1}$ has the quotient δ_B^{-1} , via $f \mapsto \int_N f(wn) dn$. Thus we have a non-zero morphism F from π to $\operatorname{Ind}_B^G \delta_B^{-1}$. The representation π has no 1-dimensional quotient by Theorem 64. Thus the Steinberg representation is isomorphic to a subrepresentation of $\operatorname{Ind}_B^G \delta_B^{-1}$ and therefore the cuspidal support of St_G is the G-conjugacy class of $\operatorname{Res}_T^B \delta_B^{-\frac{1}{2}}$, because we have to consider normalized parabolic induction to detect the cuspidal support.