Exercise sheet 6 Lecture p-adic Representation Theory

Dr. Daniel Skodlerack

Please prepare by **02.06.2017**

In this problem sheet F denotes a non-archimedean local field.

Aufgabe 1. (10 points) Show that there is a non-semisimple two-dimensional smooth complex representation of $GL_n(F)$. Hint: Show at first that there is a non-semisimple two-dimensional complex representation of \mathbb{Z} .

Aufgabe 2. (10 points)(Mackey's irreducibility criteria) Let G be a second countable locally profinite group and H be an open subgroup of G, such that for all $g \in G$ the space $(H \cap gHg^{-1})\backslash H$ is finite. (For example the condition on H is satisfied if H is open contains the center Z of G and is compact mod Z.) Then the following assertions are equivalent for a smooth irreducible representation (σ, W) of H.

- 1. c-Ind $_{H}^{G}\sigma$ is irreducible.
- 2. The intertwining of σ in G is equal to H.
- 3. $\operatorname{End}_G(\operatorname{c-Ind}_H^G \sigma) \cong \mathbb{C}$.

Aufgabe 3. (10 points)(Producing cuspidal representations) Suppose that (σ, W) is an irreducible representation of an open subgroup H of $GL_n(F)$ which contains and is compact mod the center of $GL_n(F)$. Suppose that the intertwining of σ in G is equal to H. Then c-Ind $_H^G\sigma$ is irreducible and cuspidal.

Aufgabe 4. (5 points) Find the cuspidal support of the Steinberg representation of $GL_2(F)$, i.e. of the infinite dimensional irreducible quotient of $Ind_B^{GL_2(F)} \mathbb{1}$, where B is the standard (upper) Borel subgroup.