Exercise sheet 4 Lecture p-adic Representation Theory

Dr. Daniel Skodlerack

Please prepare by **19.05.2017**

Aufgabe 1. (5+5 points)

- 1. Every smooth irreducible complex representation of a second countable abelian locally profinite group is one dimensional.
- 2. Does the statement of 1 still remains true if we skip the second countability?

Aufgabe 2. (5+5+5* points) Let 1 be the trivial representation on o_F^{\times} .

- 1. Show that $(\pi, V) := \text{c-Ind}_{o_F^{\times}}^{F^{\times}} \mathbb{1}$ is isomorphic to $\mathbb{C}[X, X^{-1}]$ as a \mathbb{C} -vector space, say via ϕ . Then the F^{\times} -action on V and ϕ define an F^{\times} -action on $\mathbb{C}[X, X^{-1}]$ via pushforward. Calculate this action in terms of $\mathbb{C}[X, X^{-1}]$ using your choice of ϕ .
- 2. Show that (π, V) is not irreducible, not semisimple, not admissible and that it has an irreducible quotient, but no irreducible subrepresentation.
- 3. Show that $\operatorname{Ind}_{o_{F}^{\times}}^{F^{\times}} \mathbb{1}$ has no irreducible quotient.

Aufgabe 3. (5 points) Let (π, V) be an admissible smooth complex representation. Show that V is irreducible if and only if its contragredient is irreducible.

Aufgabe 4. (5 points) Let G be a locally profinite group and χ be a smooth character of G. Let further H be a closed subgroup of G and (ρ, W) be a complex smooth representation of H. Prove $\operatorname{c-Ind}_H^G(\rho\chi|_H) \cong (\operatorname{c-Ind}_H^G(\rho))\chi$ and $\operatorname{Ind}_H^G(\rho\chi|_H) \cong (\operatorname{Ind}_H^G(\rho))\chi$.

Aufgabe 5. (5+5 points) Let G be a locally profinite group and $H_1 \leq H_2$ closed subgroups of G. Show the transitivity of induction and compact induction, i.e.

$$\operatorname{c-Ind}_{H_2}^G\operatorname{c-Ind}_{H_1}^{H_2}\rho\cong\operatorname{c-Ind}_{H_1}^G\rho$$

and

$$\operatorname{Ind}_{H_2}^G \operatorname{Ind}_{H_1}^{H_2} \rho \cong \operatorname{Ind}_{H_1}^G \rho$$

for all smooth representations ρ of H.