Exercise sheet 3 Lecture p-adic Representation Theory

Dr. Daniel Skodlerack

Please prepare by **12.05.2017**

Aufgabe 1 (5+5 points). 1. Let (π, V) be an irreducible smooth complex representation of a profinite group. Show that V is finite dimensional.

2. Show that every smooth complex representation of a profinite group K is semisimple. Hint: Show that every smooth complex representation of K is unitary and restrict to the finite dimensional case.

Aufgabe 2 (5 points). Find a smooth irreducible complex representation of $GL_2(\mathbb{Z}_2)$ which is not a character, i.e. which is not one-dimensional.

Aufgabe 3 (5 points). Let F be a non-archimedian local field. Then every smooth complex character of $GL_m(F)$ has the form $\chi \circ \det$ where χ is a smooth complex character of F^{\times} .

Aufgabe 4 (5+5+5* points). We consider a smooth irreducible representation ρ of a profinite group K, and we define $e_{\rho} \in C_c^{\infty}(K)$ via

$$e_{\rho}(g) := \frac{\dim(\rho)}{\mu(K)} \operatorname{tr}(\rho(g^{-1})).$$

- 1. Show that e_{ρ} is an idempotent in $\mathcal{H}(K)$, using the convolution formular for traces for representations of finite groups.
- 2. Show that e_{ρ} is central in $\mathcal{H}(K)$.
- 3. Let (π, V) be a smooth representation of K. Show that $\pi(e_{\rho})V$ is the ρ -isotypic component of V, i.e. $\pi(e_{\rho})V$ is the sum of all subrepresentations of V which are isomorphic to ρ .