$\begin{array}{c} {\rm HOMOLOGICAL~ALGEBRA,~FALL~2025} \\ {\rm PROBLEM~SHEET~10} \end{array}$

PROF. DANIEL SKODLERACK

Problem 1 (10, Ext). Conpute $\operatorname{Ext}^i_{\mathbb{Z}}(\mathbb{Q}^{\times}, \mathbb{Z})$ for i = 0, 1.

Problem 2 (15, Ext and extensions). Solve the three exercises stated in Theorem 135 of the lecture notes.

Problem 3 (10, extensions). Let p be a prime number. Find all classes of extensions of \mathbb{Z}/p by \mathbb{Z}/p in the category of abelian groups. You need to prove that your findings are pairwise not equivalent.

Problem 4 (10, injective modules). Prove that an R-module N is injective if and only if for all R-modules M we have $\operatorname{Ext}^1_R(M,N)=0$.

1

Date: Please hand in before the lecture on Friday, November 28thth 2025. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.