HOMOLOGICAL ALGEBRA, FALL 2025 PROBLEM SHEET 8

PROF. DANIEL SKODLERACK

Note that if not emphasised differently, all functors are meant to be covariant.

Problem 1 (10, double complex). Compute the homology groups of $Tot^{\prod}(C)$ where $C_{p,q} = \mathbb{Z}/4$ for all integers p,q and all differentials are the multiplication by 2. Show that $Tot^{\oplus}(C)$ is acyclic.

Problem 2 (10+10**, left exact vis-a-vis right exact). Let $F: \mathcal{A} \to \mathcal{B}$ be a left exact covariant functor and suppose that \mathcal{A} has enough projectives. Prove that for all non-negative integers i we have:

$$R^i F(A) \cong (L_i(F^{op}))^{op}(A).$$

for all $A \in \mathcal{A}$,

- (i) for module categories.
- (ii) for general abelian categories.

Problem 3 (10, Ext). Prove Proposition 94 without using that $Ext^i(A, B)$ can be computed via resolving the first entry A.

Problem 4 (10, sheaf cohomology). Prove that the global sections functor in Example 97(b) is left exact.

Date: Please hand in before the lecture on Friday, November 14thth 2025. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.