HOMOLOGICAL ALGEBRA, FALL 2025 PROBLEM SHEET 5

PROF. DANIEL SKODLERACK

Problem 1 (10, delta-functor). Let P be a projective R-left module and consider the following family of functors from $Ch_{\geq 0}(R\text{-mod})$ to mod-R.

$$T_n(M_*) := H_n(Hom_R(P, M_*)), \ n \ge 0.$$

Here $Hom_R(P, M_*)$ is the conically defined complex of right R-modules $Hom_R(P, M_m)$. The differentials are the push-forward maps from the differentials of M_* . Prove that $(T, \partial \circ Hom_R(P, -))$ is a universal δ -functor. $(\partial_n, n \ge 1$, are the connecting morphisms for H_* .)

Problem 2 (10, projectives in Ch(A). Prove Example 61(b), see [Wei94, Exercise 2.2.1].

Problem 3 (10, injective module). Consider the ring $R = \mathbb{Z}/m$ and d|m. Consider $M := \mathbb{Z}/d$ as a quotient module of R by $d\mathbb{Z}/m\mathbb{Z}$. Find the conditions on d for which M is an injective R-module and prove your found conjecture.

- **Problem 4** (10, divisible module). (i) Let R be an integral domain. Prove that an R-module M is injective if and only if it is R-divisible, i.e. for every $x \in M$ and every nonzero $r \in R$ there is an element $y \in M$ such that ry = x.
 - (ii) Take $R = \mathbb{Z}$. Find an injective resolution for \mathbb{Z} in the category of abelian groups.

Problem 5 (10**, projective module). Determine if the Taylor series ring $\mathbb{Z}[[X]]$ is a projective $\mathbb{Z}[X]$ -module.

REFERENCES

[Wei94] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

1

Date: Please hand in before the lecture on Friday, October 24thth 2025. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.