HOMOLOGICAL ALGEBRA, FALL 2025 PROBLEM SHEET 4

PROF. DANIEL SKODLERACK

Problem 1 (10, mapping cone). Let f be a chain map between chain complexes of R-modules. Suppose that f is a quasi-isomorphism. Prove that $H_{n-2}(ker(f)) \oplus H_{n-1}(im(f))$ is R-isomorphic to $H_n(coker(f)) \oplus H_{n-1}(im(f))$, for all integers n.

Problem 2 (10, homotopy equivalence for the cone). Prove Exercise 1.5.5 in [Wei94].

Problem 3 (40, first property of the mapping cylinder). Prove Proposition 46.

Problem 4 (10, cone in an exact triangle). Prove for a chain map $f: B \to C$ in Ch(A) for a module category A that the composition of f with the canonical chain map

$$pr_1 : cone(f)[1] \to B$$
,

i.e. $f \circ pr_1$, is null-homotopic.

References

[Wei94] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

Date: Please hand in before the lecture on Friday, October 17thth 2025. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.