HOMOLOGICAL ALGEBRA, FALL 2025 PROBLEM SHEET 3

PROF. DANIEL SKODLERACK

Problem 1 (10, truncation). Define the good and brutal truncations for cochain complexes.

- **Problem 2** (20, exact sequence of chain complexes). (i) Let $A \xrightarrow{f} B \xrightarrow{g} C$ be a sequence of chain complexes in an abelian category \mathcal{A} such that $g \circ f$ is zero. Prove in categorical terms that this sequence is exact in $\mathbf{Ch}(\mathcal{A})$ if and only if for all integers n the sequence $A_n \xrightarrow{f_n} B_n \xrightarrow{g_n} C_n$ is exact in \mathcal{A} .
 - (ii) Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a short exact sequence of chain complexes in an abelian category. Show that if two of the chain complexes are acyclic, then the remaining one is acyclic.

Problem 3 (40, category \mathbf{K}). Solve Exercise 1.4.5 (1.,2.,3., and 4.) in [Wei94]. It is about the category of chain complexes of R-modules with chain homotopy classes of chain maps and the question if this category is abelian.

Problem 4 (10, Snake lemma). Prove the Snake lemma for abelian categories using categorical arguments, i.e. without using the embedding theorem.

Problem 5 (10*, homotopy classes of chain maps). Compute all the chain homotopy classes from C to C for the chain complex C of abelian groups, given by $C_n = \mathbb{Z}/8$ and d_n is the multiplication with 4.

REFERENCES

[Wei94] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

Date: Please hand in before the lecture on Friday, October 10thth 2025. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.