DIFFERENTIAL TOPOLOGY 1 SPRING 2025 PROBLEM SHEET 10/11 ## PROF. DANIEL SKODLERACK **Problem 1** (10, volume form of a hypersurface). Let $f: \mathbb{R}^{m+1} \to \mathbb{R}$ be a smooth map with regular value 0. We consider $N := f^{-1}(0)$ with orientation given by the gradient of f, i.e. we consider $\sum_{i=1}^{m+1} \frac{\partial f}{\partial x_i} \frac{\partial}{\partial x_i}$ at a point as the outwards pointing normal vector at N. Let g_N be the restriction of the standard metric of \mathbb{R}^{m+1} to N. Compute the volume form of g_N with respect to the given orientation. **Problem 2** (10, volume form for a curve). Let C be a one-dimensional submanifold of \mathbb{R}^m ($m \ge 2$) parametrised by a smooth $r : \mathbb{R} \to \mathbb{R}^m$ such that r'(t) is non-zero for all $t \in \mathbb{R}$. We consider on C the orientation given in direction of r'. Let g_C be the restriction of the standard metric of \mathbb{R}^m to C. Compute the volume form of g_C with respect to the given orientation. **Problem 3** (10, orientation on a product manifold). Let (M, o_M) , (N, o_N) be oriented manifolds. Show that there is an orientation on $M \times N$ such that the product of an oriented atlas of M with an oriented atlas of N is an oriented atlas of $M \times N$. **Problem 4** (10, volume form of a torus). We consider the torus $T = S^1 \times S^1$ embedded into \mathbb{R}^4 , via inclusion $S^1 \subseteq \mathbb{R}^2$. The orientation is given by choosing on S^1 counter-clockwise orientation. Let g be the restriction of the standard Riemannian metric of \mathbb{R}^4 to T. Compute the volume form of g with respect to the given orientation. **Problem 5** (10, Poincaré's lemma for compact cohomology). Prove that j commutes with the exterior derivative in the proof of Lemma 169, see Step 1. **Problem 6** (10+10, Lemma 171 for manifolds with boundary). (i) Let M be a connected manifold. Prove that $M \backslash \partial M$ is connected. (ii) Prove Lemma 171 for manifolds with non-empty boundary. 1 Date: Please hand in before the lecture on Thursday, May 13thth 2025. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.