## DIFFERENTIAL TOPOLOGY PROBLEM SHEET 11

PROF. DANIEL SKODLERACK

Problem 1 (10 points, vector fields on $S^{2}$ ). Let X be a global smooth vector field on $\mathrm{S}^{2}$. Prove that X has a zero.

Problem 2 (10 points, torus). Compute $\int_{S^{1} \times S^{1}} \omega$ with respect to the outwards pointing orientation and where $\omega$ is the 2-form with integral

$$
\int_{\mathrm{S}^{1} \times \mathrm{S}^{1}} \cos ^{2}\left(\theta_{2}\right) \omega=1
$$

Problem 3 (10 points, orientation). Finish the proof of Proposition 4.5. It is the Proposition about the characterization of orientation.

Problem 4 (10 points, cylinder). Let M be the lateral part of a cylinder

$$
\left.\mathrm{M}=\left\{(x, y, z) \mid x^{2}+y^{2}=R^{2},-1 \leqslant z \leqslant 1\right\},(R>0 \text { fixed })\right)
$$

Compute $\int_{\mathrm{M}} z^{2} d z \wedge d \theta$. where the orientation is given by the outwards pointing normal vector, with respect to the full cylinder.

[^0]
[^0]:    Date: Please hand in before the lecture by 28th of April 2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.

