DIFFERENTIAL TOPOLOGY
 PROBLEM SHEET 7

PROF. DANIEL SKODLERACK

Problem 1 (20, tensor product). Let $\mathrm{V}_{1}, \mathrm{~V}_{2}$ be real vector spaces. A pair (E, \otimes) is called tensor product of V ! and V_{2} if E is an \mathbb{R}-vector space and \otimes is a biliniear map from $\mathrm{V}_{1} \times \mathrm{V}_{2}$ to E such that the following holds: For every biliniear map $b: \mathrm{V}_{1} \times \mathrm{V}_{2} \rightarrow \mathrm{~W}$ there is a unique linear map $g: \mathrm{E} \rightarrow \mathrm{W}$ such that $b=g \circ \otimes$ (Universal property of the tensor product). Prove:
(i) Suppose there are two tensor products $\left(\mathrm{E}_{1}, \otimes_{1}\right),\left(\mathrm{E}_{2}, \otimes_{2}\right)$ for $\mathrm{V}_{1}, \mathrm{~V}_{2}$ then there is a linear isomorphism $f: \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ such that $f \circ \otimes_{1}=\otimes_{2}$.
(ii) There exists a tensor product for V_{1} and V_{2}.

Problem 2 (10, exterior power). Let V be a finite dimensional real vector space. Prove that $\Lambda^{k}\left(\mathrm{~V}^{*}\right)$ is isomorphic to $\mathrm{Alt}^{k}(\mathrm{~V})$ for all positive integers k.

Problem 3 (10 points, associativity of the tensor product). Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ be real vector spaces. Prove that there is a natural isomorphism from $\left(V_{1} \otimes V_{2}\right) \otimes V_{3}$ to $V_{1} \otimes\left(V_{2} \otimes V_{3}\right)$.
Problem 4 ($10, k$-tensor product). Let $k \geqslant 3$ be a positive integer. Let $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{k}$ be real vector-spaces and put

$$
\left.\mathrm{E}:=\left(\ldots\left(\mathrm{V}_{1} \otimes \mathrm{~V}_{2}\right) \otimes \mathrm{V}_{3}\right) \otimes \cdots \otimes \mathrm{V}_{k-1}\right) \otimes \mathrm{V}_{k}
$$

Formulate and prove the universal property for the k-tensor product E .

[^0]
[^0]: Date: Please hand in before the lecture by 31.03.2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.

