DIFFERENTIAL TOPOLOGY PROBLEM SHEET 7

PROF. DANIEL SKODLERACK

Problem 1 (20, tensor product). Let V_1 , V_2 be real vector spaces. A pair (E, \otimes) is called *tensor* product of V_1 and V_2 if E is an \mathbb{R} -vector space and \otimes is a biliniear map from $V_1 \times V_2$ to E such that the following holds: For every biliniear map $b : V_1 \times V_2 \to W$ there is a unique linear map $g : E \to W$ such that $b = g \circ \otimes$ (Universal property of the tensor product). Prove:

- (i) Suppose there are two tensor products (E_1, \otimes_1) , (E_2, \otimes_2) for V_1, V_2 then there is a linear isomorphism $f: E_1 \to E_2$ such that $f \circ \otimes_1 = \otimes_2$.
- (ii) There exists a tensor product for V_1 and V_2 .

Problem 2 (10, exterior power). Let V be a finite dimensional real vector space. Prove that $\Lambda^k(V^*)$ is isomorphic to Alt^k(V) for all positive integers k.

Problem 3 (10 points, associativity of the tensor product). Let V_1, V_2, V_3 be real vector spaces. Prove that there is a natural isomorphism from $(V_1 \otimes V_2) \otimes V_3$ to $V_1 \otimes (V_2 \otimes V_3)$.

Problem 4 (10, *k*-tensor product). Let $k \ge 3$ be a positive integer. Let V_1, \ldots, V_k be real vector-spaces and put

$$\mathbf{E} := (\dots (\mathbf{V}_1 \otimes \mathbf{V}_2) \otimes \mathbf{V}_3) \otimes \dots \otimes \mathbf{V}_{k-1}) \otimes \mathbf{V}_k.$$

Formulate and prove the universal property for the k-tensor product E.

Date: Please hand in before the lecture by 31.03.2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.