DIFFERENTIAL TOPOLOGY PROBLEM SHEET 6

PROF. DANIEL SKODLERACK

Problem 1 (10 points, open sets). Let M, N be C^r -manifolds and V be a non-empty open subset of N. Then $C^r(M, V)$ is an open subset of $C^r_S(M, N)$.

- **Problem 2** (20 points, neighborhood basis). (i) Let X be a topological space and $(A_i)_{i \in I}$ be a locally finite family of closed subsets of X. Show that the union of all A_i is a closed subset of X.
 - (ii) Let M be a paracompact Hausdorff space and let $(K_i)_{i \in I}$ be a locally finite family of compact subsets of M. Show that there is a locally finite open covering $\mathfrak{U} = (U_j)_{j \in J}$ of M such that for every index $i \in I$ there is a $j \in J$ such that K_i is a subset of U_j .
 - (iii) Let r be a non-negative integer and M be a C^r -manifold and let f be a C^r -map from M to \mathbb{R} . Prove that the following sets form an open neighborhood basis of f in the strong topology:

where

$$\mathcal{N}(f,\Phi,K,E),$$

- (a) $K = (K_i)_{i \in I}$ is a locally finite compact covering of M and $\Phi = ((\phi_i, U_i))_{i \in I}$ is a family of charts such that K_i is contained in U_i ,
- (b) $E = (\epsilon_i)_{i \in I}$ is a family of positive numbers and
- (c) \mathcal{N} is defined to be the set of all C^r-maps h from M to \mathbb{R} such that for all indexes $i \in I$ we have that $||h f||_{r, K_i}$ is smaller than ϵ_i .

Problem 3 (10 points, differential structures without common chart). Consider the standard C^i -structure α_i on \mathbb{R} , i.e. the one given by the identity map as a global chart, for i = 1, 2. Is there another C²-structure β_2 on \mathbb{R} which does not intersect α_2 but is contained in α_1 ?

Problem 4 (10 points, C^{∞} -differential structures on \mathbb{R}). How many C^{∞} -differential structures does \mathbb{R} with Euclidean topology has up to C^{∞} -diffeomorphism? Give a proof. *Hint: You just need to consider* C^1 -differential structures.

Date: Please hand in before the lecture by **24.03.2023**. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.