DIFFERENTIAL TOPOLOGY **PROBLEM SHEET 1**

PROF. DANIEL SKODLERACK

Problem 1 (10, maximal atlas). Let M be a C^r -manifold and Φ is a C^r -atlas on M. Show that there is a unique maximal C^r -atlas on M which contains Φ .

- (i) Let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ be a C¹-map and $y \in im(f)$ Problem 2 (20, manifolds as fibers). such that at every element in the pre-image M of y the derivative of f is non-zero. Show that M is a C¹-submanifold of \mathbb{R}^{n+1} .
 - (ii) Is the above statement still true if we allow M to contain one element where the derivative of f is zero?

Problem 3 (10, atlas on the *n*-dimensional sphere). We consider the C¹-differential structure α_1 on S^n $(n \ge 1)$ containing the atlas of Example 1.5(a). Find in α_1 an atlas of minimal cardinality.

Problem 4 (10, graph of a function). Let $f : \mathbb{R}^n \to \mathbb{R}^k$ be a continuous map and Γ_f its graph. Then Γ_f has a C^{ω} -differential structure C^{ω} -diffeomorphic to \mathbb{R}^n . Prove that the following assertions are equivalent:

- (i) The inclusion $\Gamma_f \hookrightarrow \mathbb{R}^{n+k}$ is C¹-differentiable.
- (ii) $f \in C^1(\mathbb{R}^n, \mathbb{R}^k)$. (iii) Γ_f is a C¹-submanifold of \mathbb{R}^{n+k} .

Date: Please hand in before the lecture by 17th of February 2023. For all exercises the results need to be proven using results from this lecture and the lectures before, provided you give a reference.