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Problem 1 (10, time value). Let ppStqt“0,T , pFtqt“0,T in F ,Pq be a 1-period market model
with

(i) constant spot rate r P p´1,8q and S0
0 “ 1,

(ii) one risky asset S “ Sp1q with possible trajectories

tpS0pωq, S1pωqq| ω P Ωu “ tp1,
1

2
q, p1, 2qu,

i.e. those trajectories are exactly the ones with positive probability,
(iii) F0 “ tH,Ωu, F1 “ σpSp1qq.

We consider for every λ ą 0 a new asset:

S
pλq
t :“ λS

p1q
t , t “ 0, 1,

and the put option Cputλ on Spλq with strike 1. Let us assume that the market model is arbitrage-
free.

(i) Show that the function πr : p0,8q Ñ p0,8q which maps λ to the arbitrage-free price
of Cputλ is convex.

(ii) For which r there is a λ such that the put Cputλ has a negative time value?
(iii) Suppose the spot rate is equal to 1

2 . For which λ the put option Cputλ has a vanishing
time value?

Problem 2 (10, completeness and extremal points). Let ppStqt“0,T , pFtqt“0,T in F ,Pq be
a multi-period market model such that F “ FT and F0 is the trivial σ-algebra. Let Q be the set
of martingale measures for the discounted assets. We define for Q P Q the set

AQ :“ tQ̃ P Q| Q̃ ăă Qu.

Prove or disprove for an element Q P Q the equivalence of the following two assertions:
(i) AQ “ tQu.
(ii) Q P ExtpQq.

Problem 3 (10, set of martingale measures). Let ppStqt“0,T , pFtqt“0,T in F ,Pq be a two-
period market model such that

‚ d “ 1, i.e. we have one bond and one risky asset S,
‚ F “ F2 and Ft “ σpS1, . . . , Stq, t “ 0, 1, 2,
‚ S

p0q
t “ 1, t “ 0, 1, 2,

‚ the asset S has the following possible trajectories

p
7

2
, 1,

1

2
q, p

7

2
, 1, 2q, p

7

2
, 3, 1q, p

7

2
, 3, 4q, p

7

2
, 4, 3q, p

7

2
, 4, 5q.

(i) Compute the set of martingale measures for S.
(ii) Compute the set of martingale measures for the market model.
(iii) Visualize your results in R3.

Problem 4 (10, bank with extra information). Suppose in ppStqt“0,T , pFtqt“0,T in F ,Pq, a
complete market with trivial σ-algebra F0, there is a bank with more information, more precisely
there is a filtration pGtqt“0,T in F “ FT , which satisfies
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‚ Ft Ď Gt Ď Ft`1 for every t ă T ,
‚ and there exists a time s ă T and an index i ě 1 such that

E˚rX
piq
s`1|Fss ‰ E˚rX

piq
s`1|Gss

for the ith asset with respect to the unique martingale measure P˚.
Show that the bank has an arbitrage opportunity, and explain how you get a realizing trading
strategy in terms of pGtqt“0,T and completeness.


