ABSTRACT ALGEBRA EXERCISE SHEET 12

PROF. DANIEL SKODLERACK

Problem 1 (10 points). Let $E_1|F$ and $E_2|F$ be two finite extensions inside a field extension E|F. Show that

$$[E_1E_2:F] \leq [E_1:F][E_2:F].$$

Problem 2 (10 points). (i) Let A_i , $i \in \mathbb{N}$, be non-empty sets such that $A_i \supseteq A_{i+1}$ for all $i \in \mathbb{N}$. Show that $(f_{i,j})_{i \leq j \in \mathbb{N}}$ is a projective system, where $f_{i,j}$ is the inclusion of A_j into A_i , and show that there is a bijection from $\lim_{i \in \mathbb{N}} A_i$ to $\bigcap_{i \in \mathbb{N}} A_i$, if the latter intersection is non-empty.

is non-empty.

(ii) Consider the projective limit

$$\varprojlim_{\mathbb{N}} \mathbb{Z}/p^n\mathbb{Z}$$

for a prime number p. This ring is denoted by $\hat{\mathbb{Z}}_p$ and is called the ring of p-adic integers. Show that there is a solution of $x^2 = 2$ in $\hat{\mathbb{Z}}_7$.

Problem 3 (10 points). Let $E = F(\alpha)$ be algebraic over F of odd degree. Show that $E = F[\alpha] = F[\alpha^2]$.

Problem 4 (10 points). Prove Proposition 122(ii).

Date: Please hand in before the lecture by 20.05.2021. For all exercises the results need to be proven.